Interpolating and smoothing biquadratic spline

IF 0.6 4区 数学 Q4 MATHEMATICS, APPLIED
R. Kučera
{"title":"Interpolating and smoothing biquadratic spline","authors":"R. Kučera","doi":"10.21136/am.1995.134298","DOIUrl":null,"url":null,"abstract":"The paper deals with the biquadratic splines and their use for the interpolation in two variables on the rectangular mesh. The possibilities are shown how to interpolate function values, values of the partial derivative or values of the mixed derivative. Further, the so-called smoothing biquadratic splines are defined and the algorithms for their computation are described. All of these biquadratic splines are derived by means of the tensor product of the linear spaces of the quadratic splines and their bases are given by the so-called fundamental splines.","PeriodicalId":55505,"journal":{"name":"Applications of Mathematics","volume":"19 1","pages":"339-356"},"PeriodicalIF":0.6000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/am.1995.134298","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The paper deals with the biquadratic splines and their use for the interpolation in two variables on the rectangular mesh. The possibilities are shown how to interpolate function values, values of the partial derivative or values of the mixed derivative. Further, the so-called smoothing biquadratic splines are defined and the algorithms for their computation are described. All of these biquadratic splines are derived by means of the tensor product of the linear spaces of the quadratic splines and their bases are given by the so-called fundamental splines.
插值和平滑双二次样条
本文讨论了双二次样条曲线及其在矩形网格上两变量插值中的应用。说明了如何插值函数值、偏导数值或混合导数值的可能性。进一步,定义了所谓的平滑双二次样条,并描述了其计算算法。所有这些双二次样条都是通过二次样条线性空间的张量积推导出来的它们的基是由所谓的基本样条给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applications of Mathematics
Applications of Mathematics 数学-应用数学
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
3.0 months
期刊介绍: Applications of Mathematics publishes original high quality research papers that are directed towards applications of mathematical methods in various branches of science and engineering. The main topics covered include: - Mechanics of Solids; - Fluid Mechanics; - Electrical Engineering; - Solutions of Differential and Integral Equations; - Mathematical Physics; - Optimization; - Probability Mathematical Statistics. The journal is of interest to a wide audience of mathematicians, scientists and engineers concerned with the development of scientific computing, mathematical statistics and applicable mathematics in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信