Efficient Construction of Minimum-Redundancy Codes for Large Alphabets

Alistair Moffat, A. Turpin
{"title":"Efficient Construction of Minimum-Redundancy Codes for Large Alphabets","authors":"Alistair Moffat, A. Turpin","doi":"10.1109/18.681345","DOIUrl":null,"url":null,"abstract":"We consider the problem of calculating minimum-redundancy codes for alphabets in which there is significant repetition of symbol weights. On a sorted-by-weight alphabet of, n symbols and r distinct symbol weights we show that a minimum-redundancy prefix code can be constructed in O(r+r log(n/r)) time, and that a minimum redundancy L-bit length-limited prefix code can be constructed in O(Lr+Lrlog(n/r)) time. When r is small relative to n-which is necessarily the case for most practical coding problems on large alphabets-these bounds represent a substantial improvement upon the best previous algorithms for these two problems, which consumed O(n) time and O(nL) time, respectively. The improved algorithms are also space-efficient.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"119 1","pages":"1650-1657"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/18.681345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

We consider the problem of calculating minimum-redundancy codes for alphabets in which there is significant repetition of symbol weights. On a sorted-by-weight alphabet of, n symbols and r distinct symbol weights we show that a minimum-redundancy prefix code can be constructed in O(r+r log(n/r)) time, and that a minimum redundancy L-bit length-limited prefix code can be constructed in O(Lr+Lrlog(n/r)) time. When r is small relative to n-which is necessarily the case for most practical coding problems on large alphabets-these bounds represent a substantial improvement upon the best previous algorithms for these two problems, which consumed O(n) time and O(nL) time, respectively. The improved algorithms are also space-efficient.
大字母最小冗余码的高效构造
我们考虑的问题是计算最小冗余码的字母,其中有显著重复的符号权重。在一个有n个符号和r个不同符号权值的加权排序字母表上,我们证明了一个最小冗余前缀码可以在O(r+r log(n/r))时间内构造,一个最小冗余l位长度限制前缀码可以在O(Lr+Lrlog(n/r))时间内构造。当r相对于n较小时(对于大多数大字母的实际编码问题来说,这是必然的情况),这些边界代表了对这两个问题的最佳先前算法的实质性改进,这两个问题分别消耗O(n)和O(nL)时间。改进后的算法也很节省空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信