Network Security Prediction and Situational Assessment Using Neural Network-based Method

Q3 Computer Science
Liu Zhang, Yanyu Liu
{"title":"Network Security Prediction and Situational Assessment Using Neural Network-based Method","authors":"Liu Zhang, Yanyu Liu","doi":"10.13052/jcsm2245-1439.1245","DOIUrl":null,"url":null,"abstract":"Technology development has promoted network construction, but malicious network attacks are still inevitable. To solve the problem that the current network security assessment is not practical and the assessment effect is poor, this study proposes a network security monitoring tool based on situation assessment and prediction to assist network security construction. The framework of the evaluation module is based on convolution neural network. The initial module is introduced to convert some large convolution cores into small convolution cores in series. This is to reduce the operating cost, because building multiple evaluators in series can maximize the retention of characteristic values. This module is the optimized form of Elman neural network. The delay operator is added to the model to respond to the time property of network attack. At the same time, particle swarm optimization algorithm is used to solve the initial weight dependence problem. The research adopts two methods of security situation assessment and situation prediction to carry out model application test. During the test, the commonly used KDD Cup99 is used as intrusion detection data. The experimental results of the network security situation evaluation module show that the optimization reduces the evaluation error by 3.34%, and the accuracy meets the evaluation requirements. The model is superior to the back propagation neural network and the standard Elman model. The model proposed in this study achieves better prediction of posture scores from 0.3 to 0.9, which is more stable than BP neural network. It proves that the model designed by the research can achieve more stable and higher prediction than similar models. It is more practical to obtain better results on the basis of a more stable model architecture and lower implementation costs, which is a meaningful attempt in the wide application of network security.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":"24 1","pages":"547-568"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.1245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Technology development has promoted network construction, but malicious network attacks are still inevitable. To solve the problem that the current network security assessment is not practical and the assessment effect is poor, this study proposes a network security monitoring tool based on situation assessment and prediction to assist network security construction. The framework of the evaluation module is based on convolution neural network. The initial module is introduced to convert some large convolution cores into small convolution cores in series. This is to reduce the operating cost, because building multiple evaluators in series can maximize the retention of characteristic values. This module is the optimized form of Elman neural network. The delay operator is added to the model to respond to the time property of network attack. At the same time, particle swarm optimization algorithm is used to solve the initial weight dependence problem. The research adopts two methods of security situation assessment and situation prediction to carry out model application test. During the test, the commonly used KDD Cup99 is used as intrusion detection data. The experimental results of the network security situation evaluation module show that the optimization reduces the evaluation error by 3.34%, and the accuracy meets the evaluation requirements. The model is superior to the back propagation neural network and the standard Elman model. The model proposed in this study achieves better prediction of posture scores from 0.3 to 0.9, which is more stable than BP neural network. It proves that the model designed by the research can achieve more stable and higher prediction than similar models. It is more practical to obtain better results on the basis of a more stable model architecture and lower implementation costs, which is a meaningful attempt in the wide application of network security.
基于神经网络的网络安全预测与态势评估方法
技术的发展促进了网络建设,但恶意网络攻击仍然不可避免。针对目前网络安全评估不实用、评估效果差的问题,本研究提出了一种基于态势评估与预测的网络安全监测工具,以辅助网络安全建设。评估模块的框架是基于卷积神经网络的。引入初始模块将一些大的卷积核串联成小的卷积核。这是为了降低运行成本,因为串联构建多个评估器可以最大限度地保留特征值。该模块是Elman神经网络的优化形式。在模型中加入延迟算子以响应网络攻击的时间特性。同时,采用粒子群优化算法解决初始权依赖问题。本研究采用安全态势评估和态势预测两种方法进行模型应用试验。在测试过程中,使用常用的KDD Cup99作为入侵检测数据。网络安全态势评估模块的实验结果表明,优化后的评估误差降低了3.34%,准确度满足评估要求。该模型优于反向传播神经网络和标准Elman模型。本研究提出的模型在0.3 ~ 0.9范围内对姿态评分的预测效果较好,比BP神经网络更稳定。实验证明,所设计的模型比同类模型更稳定,预测精度更高。在更稳定的模型体系结构和更低的实现成本的基础上,获得更好的结果更具有实用性,是网络安全广泛应用中的一次有意义的尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cyber Security and Mobility
Journal of Cyber Security and Mobility Computer Science-Computer Networks and Communications
CiteScore
2.30
自引率
0.00%
发文量
10
期刊介绍: Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信