Driver Drowsiness Detection Using Gray Wolf Optimizer Based on Voice Recognition

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES
S. Jasim, A. A. Abdul Hassan, Scott Turner
{"title":"Driver Drowsiness Detection Using Gray Wolf Optimizer Based on Voice Recognition","authors":"S. Jasim, A. A. Abdul Hassan, Scott Turner","doi":"10.14500/aro.11000","DOIUrl":null,"url":null,"abstract":"Globally, drowsiness detection prevents accidents. Blood biochemicals, brain impulses, etc., can measure tiredness. However, due to user discomfort, these approaches are challenging to implement. This article describes a voice-based drowsiness detection system and shows how to detect driver fatigue before it hampers driving. A neural network and Gray Wolf Optimizer are used to classify sleepiness automatically. The recommended approach is evaluated in alert and sleep-deprived states on the driver tiredness detection voice real dataset. The approach used in speech recognition is mel-frequency cepstral coefficients (MFCCs) and linear prediction coefficients (LPCs). The SVM algorithm has the lowest accuracy (71.8%) compared to the typical neural network. GWOANN employs 13-9-7-5 and 30-20-13-7 neurons in hidden layers, where the GWOANN technique had 86.96% and 90.05% accuracy, respectively, whereas the ANN model achieved 82.50% and 85.27% accuracy, respectively.","PeriodicalId":8398,"journal":{"name":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14500/aro.11000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Globally, drowsiness detection prevents accidents. Blood biochemicals, brain impulses, etc., can measure tiredness. However, due to user discomfort, these approaches are challenging to implement. This article describes a voice-based drowsiness detection system and shows how to detect driver fatigue before it hampers driving. A neural network and Gray Wolf Optimizer are used to classify sleepiness automatically. The recommended approach is evaluated in alert and sleep-deprived states on the driver tiredness detection voice real dataset. The approach used in speech recognition is mel-frequency cepstral coefficients (MFCCs) and linear prediction coefficients (LPCs). The SVM algorithm has the lowest accuracy (71.8%) compared to the typical neural network. GWOANN employs 13-9-7-5 and 30-20-13-7 neurons in hidden layers, where the GWOANN technique had 86.96% and 90.05% accuracy, respectively, whereas the ANN model achieved 82.50% and 85.27% accuracy, respectively.
基于语音识别的灰狼优化驾驶员睡意检测
在全球范围内,睡意检测可以防止事故发生。血液生化、脑脉冲等,都可以衡量疲劳程度。然而,由于用户不舒服,这些方法很难实现。本文介绍了一种基于语音的困倦检测系统,并展示了如何在驾驶员疲劳妨碍驾驶之前检测驾驶员疲劳。采用神经网络和灰狼优化器对睡意进行自动分类。在驾驶员疲劳检测语音真实数据集上对推荐的方法在警觉状态和睡眠剥夺状态下进行了评估。语音识别中使用的方法是mel-frequency倒谱系数(MFCCs)和线性预测系数(LPCs)。与典型神经网络相比,SVM算法的准确率最低(71.8%)。GWOANN在隐藏层使用13-9-7-5和30-20-13-7神经元,其中GWOANN技术的准确率分别为86.96%和90.05%,而ANN模型的准确率分别为82.50%和85.27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY MULTIDISCIPLINARY SCIENCES-
自引率
33.30%
发文量
33
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信