{"title":"Driver Drowsiness Detection Using Gray Wolf Optimizer Based on Voice Recognition","authors":"S. Jasim, A. A. Abdul Hassan, Scott Turner","doi":"10.14500/aro.11000","DOIUrl":null,"url":null,"abstract":"Globally, drowsiness detection prevents accidents. Blood biochemicals, brain impulses, etc., can measure tiredness. However, due to user discomfort, these approaches are challenging to implement. This article describes a voice-based drowsiness detection system and shows how to detect driver fatigue before it hampers driving. A neural network and Gray Wolf Optimizer are used to classify sleepiness automatically. The recommended approach is evaluated in alert and sleep-deprived states on the driver tiredness detection voice real dataset. The approach used in speech recognition is mel-frequency cepstral coefficients (MFCCs) and linear prediction coefficients (LPCs). The SVM algorithm has the lowest accuracy (71.8%) compared to the typical neural network. GWOANN employs 13-9-7-5 and 30-20-13-7 neurons in hidden layers, where the GWOANN technique had 86.96% and 90.05% accuracy, respectively, whereas the ANN model achieved 82.50% and 85.27% accuracy, respectively.","PeriodicalId":8398,"journal":{"name":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14500/aro.11000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Globally, drowsiness detection prevents accidents. Blood biochemicals, brain impulses, etc., can measure tiredness. However, due to user discomfort, these approaches are challenging to implement. This article describes a voice-based drowsiness detection system and shows how to detect driver fatigue before it hampers driving. A neural network and Gray Wolf Optimizer are used to classify sleepiness automatically. The recommended approach is evaluated in alert and sleep-deprived states on the driver tiredness detection voice real dataset. The approach used in speech recognition is mel-frequency cepstral coefficients (MFCCs) and linear prediction coefficients (LPCs). The SVM algorithm has the lowest accuracy (71.8%) compared to the typical neural network. GWOANN employs 13-9-7-5 and 30-20-13-7 neurons in hidden layers, where the GWOANN technique had 86.96% and 90.05% accuracy, respectively, whereas the ANN model achieved 82.50% and 85.27% accuracy, respectively.