Generalizing the local convergence analysis of a class of $k$-step iterative algorithms with Hölder continuous derivative in Banach spaces

Q4 Mathematics
I. Argyros, Debasis Sharma, S. K. Parhi
{"title":"Generalizing the local convergence analysis of a class of $k$-step iterative algorithms with Hölder continuous derivative in Banach spaces","authors":"I. Argyros, Debasis Sharma, S. K. Parhi","doi":"10.4064/AM2410-7-2020","DOIUrl":null,"url":null,"abstract":". We present the local convergence analysis of a class of k -step iterative algorithms using the Hölder continuity condition for approximating solutions of nonlinear equations in Banach spaces. Our analysis is based on the Hölder continuity of the first-order Fréchet derivative and boosts the ap-plicability of the family when the Lipschitz condition fails. This convergence analysis generalizes the local convergence results with the Lipschitz continuity condition. Also, it produces radii of balls of convergence along with the bounds on the error and uniqueness of the solution. The dynamical properties of the class are also explored using complex dynamics tools. Finally, numerical tests are conducted in support of our new theoretical results.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/AM2410-7-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

. We present the local convergence analysis of a class of k -step iterative algorithms using the Hölder continuity condition for approximating solutions of nonlinear equations in Banach spaces. Our analysis is based on the Hölder continuity of the first-order Fréchet derivative and boosts the ap-plicability of the family when the Lipschitz condition fails. This convergence analysis generalizes the local convergence results with the Lipschitz continuity condition. Also, it produces radii of balls of convergence along with the bounds on the error and uniqueness of the solution. The dynamical properties of the class are also explored using complex dynamics tools. Finally, numerical tests are conducted in support of our new theoretical results.
推广了Banach空间中具有Hölder连续导数的k阶迭代算法的局部收敛性分析
。利用Hölder连续条件,给出了一类k步迭代算法在Banach空间中近似非线性方程解的局部收敛性分析。我们的分析是基于一阶fracimchet导数的Hölder连续性,并在Lipschitz条件失效时提高了家族的适用性。这种收敛性分析推广了Lipschitz连续条件下的局部收敛性结果。此外,它还得到了收敛球的半径以及解的误差边界和唯一性。类的动态特性也探索使用复杂的动力学工具。最后进行了数值试验,验证了本文的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信