Analysis and simulation of mathematical model for the spread of tuberculosis use SEIT type with DOTS strategy

Wenand Freddrikch Johannis, Z. A. Leleury, Yopi Andri Lesnussa
{"title":"Analysis and simulation of mathematical model for the spread of tuberculosis use SEIT type with DOTS strategy","authors":"Wenand Freddrikch Johannis, Z. A. Leleury, Yopi Andri Lesnussa","doi":"10.1063/5.0059489","DOIUrl":null,"url":null,"abstract":"Tuberculosis is a contagious disease caused by mycobacterium tuberculosis, which is transmitted through aerosols or droplet nuclei into the air when a person coughs, sneezes, or talks and is then inhaled through the airway. In this study, a mathematical model will be formulated to describe the spread of tuberculosis with the DOTS strategy using the SEIT type epidemic model. Furthermore, the obtained mathematical model will determine the type of stability, look for the basic reproduction number (R0), then simulate the model using MatLab. From the analysis of the model carried out, it was obtained two equilibrium points, namely the disease-free equilibrium point F0=(S0,E0,I0,T0)=(αμ,0,0,0) and the endemic equilibrium point F1 (S*, E*, I*, T*). By using the Routh-Hurwitz criterion, it is obtained that the type of equilibrium from the two equilibrium points is asymptotically stable. The model analysis carried out also produces a basic reproduction number (R0) whereby, R0 > 1 is obtained or the spread of tuberculosis is endemic. Furthermore, the model simulation is carried out using MatLab software with a variation of the parameter value ω (rate of active tuberculosis patients undergoing treatment with the DOTS strategy), the higher the parameter value ω, the less the spread of tuberculosis is.","PeriodicalId":13712,"journal":{"name":"INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT (ICEE 2021)","volume":"292 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT (ICEE 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0059489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tuberculosis is a contagious disease caused by mycobacterium tuberculosis, which is transmitted through aerosols or droplet nuclei into the air when a person coughs, sneezes, or talks and is then inhaled through the airway. In this study, a mathematical model will be formulated to describe the spread of tuberculosis with the DOTS strategy using the SEIT type epidemic model. Furthermore, the obtained mathematical model will determine the type of stability, look for the basic reproduction number (R0), then simulate the model using MatLab. From the analysis of the model carried out, it was obtained two equilibrium points, namely the disease-free equilibrium point F0=(S0,E0,I0,T0)=(αμ,0,0,0) and the endemic equilibrium point F1 (S*, E*, I*, T*). By using the Routh-Hurwitz criterion, it is obtained that the type of equilibrium from the two equilibrium points is asymptotically stable. The model analysis carried out also produces a basic reproduction number (R0) whereby, R0 > 1 is obtained or the spread of tuberculosis is endemic. Furthermore, the model simulation is carried out using MatLab software with a variation of the parameter value ω (rate of active tuberculosis patients undergoing treatment with the DOTS strategy), the higher the parameter value ω, the less the spread of tuberculosis is.
SEIT型结核传播与DOTS策略的数学模型分析与模拟
结核病是一种由结核分枝杆菌引起的传染病,当人咳嗽、打喷嚏或说话时,它通过气溶胶或飞沫核传播到空气中,然后通过呼吸道吸入。在本研究中,将使用SEIT型流行病模型,制定一个数学模型来描述DOTS策略下结核病的传播。进一步,将得到的数学模型确定稳定性类型,寻找基本再现数(R0),然后用MatLab对模型进行仿真。通过对模型的分析,得到两个平衡点,即无病平衡点F0=(S0,E0,I0,T0)=(αμ,0,0,0)和地方病平衡点F1 (S*, E*, I*, T*)。利用Routh-Hurwitz判据,得到了两个平衡点的平衡点类型是渐近稳定的。进行的模型分析还产生了一个基本繁殖数(R0),即R0 > 1或结核病的传播是地方性的。利用MatLab软件对模型进行仿真,改变参数值ω(接受DOTS策略治疗的活动性结核病患者的比率),参数值ω越高,结核病的传播越少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信