Learning with Side Information through Modality Hallucination

Judy Hoffman, Saurabh Gupta, Trevor Darrell
{"title":"Learning with Side Information through Modality Hallucination","authors":"Judy Hoffman, Saurabh Gupta, Trevor Darrell","doi":"10.1109/CVPR.2016.96","DOIUrl":null,"url":null,"abstract":"We present a modality hallucination architecture for training an RGB object detection model which incorporates depth side information at training time. Our convolutional hallucination network learns a new and complementary RGB image representation which is taught to mimic convolutional mid-level features from a depth network. At test time images are processed jointly through the RGB and hallucination networks to produce improved detection performance. Thus, our method transfers information commonly extracted from depth training data to a network which can extract that information from the RGB counterpart. We present results on the standard NYUDv2 dataset and report improvement on the RGB detection task.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"21 1","pages":"826-834"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"199","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 199

Abstract

We present a modality hallucination architecture for training an RGB object detection model which incorporates depth side information at training time. Our convolutional hallucination network learns a new and complementary RGB image representation which is taught to mimic convolutional mid-level features from a depth network. At test time images are processed jointly through the RGB and hallucination networks to produce improved detection performance. Thus, our method transfers information commonly extracted from depth training data to a network which can extract that information from the RGB counterpart. We present results on the standard NYUDv2 dataset and report improvement on the RGB detection task.
通过模态幻觉学习副信息
我们提出了一种用于训练RGB目标检测模型的模态幻觉架构,该模型在训练时包含深度侧信息。我们的卷积幻觉网络学习了一种新的和互补的RGB图像表示,它被教导模仿来自深度网络的卷积中级特征。在测试时,图像通过RGB和幻觉网络共同处理,以提高检测性能。因此,我们的方法将通常从深度训练数据中提取的信息传输到可以从RGB对应数据中提取信息的网络中。我们在标准NYUDv2数据集上展示了结果,并报告了RGB检测任务的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信