Approximate degree lower bounds for oracle identification problems

Mark Bun, N. Voronova
{"title":"Approximate degree lower bounds for oracle identification problems","authors":"Mark Bun, N. Voronova","doi":"10.48550/arXiv.2303.03921","DOIUrl":null,"url":null,"abstract":"The approximate degree of a Boolean function is the minimum degree of real polynomial that approximates it pointwise. For any Boolean function, its approximate degree serves as a lower bound on its quantum query complexity, and generically lifts to a quantum communication lower bound for a related function. We introduce a framework for proving approximate degree lower bounds for certain oracle identification problems, where the goal is to recover a hidden binary string $x \\in \\{0, 1\\}^n$ given possibly non-standard oracle access to it. Our lower bounds apply to decision versions of these problems, where the goal is to compute the parity of $x$. We apply our framework to the ordered search and hidden string problems, proving nearly tight approximate degree lower bounds of $\\Omega(n/\\log^2 n)$ for each. These lower bounds generalize to the weakly unbounded error setting, giving a new quantum query lower bound for the hidden string problem in this regime. Our lower bounds are driven by randomized communication upper bounds for the greater-than and equality functions.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"9 1","pages":"1:1-1:24"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.03921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The approximate degree of a Boolean function is the minimum degree of real polynomial that approximates it pointwise. For any Boolean function, its approximate degree serves as a lower bound on its quantum query complexity, and generically lifts to a quantum communication lower bound for a related function. We introduce a framework for proving approximate degree lower bounds for certain oracle identification problems, where the goal is to recover a hidden binary string $x \in \{0, 1\}^n$ given possibly non-standard oracle access to it. Our lower bounds apply to decision versions of these problems, where the goal is to compute the parity of $x$. We apply our framework to the ordered search and hidden string problems, proving nearly tight approximate degree lower bounds of $\Omega(n/\log^2 n)$ for each. These lower bounds generalize to the weakly unbounded error setting, giving a new quantum query lower bound for the hidden string problem in this regime. Our lower bounds are driven by randomized communication upper bounds for the greater-than and equality functions.
oracle识别问题的近似度下界
布尔函数的近似度数是实多项式逐点逼近的最小度数。对于任何布尔函数,其近似度作为其量子查询复杂度的下界,对于相关函数一般提升为量子通信复杂度的下界。我们引入了一个框架,用于证明某些oracle识别问题的近似度下界,其目标是在给定可能非标准oracle访问的情况下恢复隐藏的二进制字符串$x \in \{0, 1\}^n$。我们的下界适用于这些问题的决策版本,其目标是计算$x$的奇偶性。我们将我们的框架应用于有序搜索和隐藏字符串问题,证明了它们的近似度下界近似$\Omega(n/\log^2 n)$。这些下界推广到弱无界错误设置中,给出了隐串问题的一个新的量子查询下界。我们的下界是由大于函数和相等函数的随机通信上界驱动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信