{"title":"Energy and Exergy Study of a Nanofluid-based Solar System Integrated with a Quadruple Effect Absorption Cycle and Thermoelectric Generator","authors":"M. Mahmoudi, I. Mirzaee, M. Khalilian","doi":"10.5829/ijee.2024.15.01.08","DOIUrl":null,"url":null,"abstract":"The exploitation of nanofluids is the most noteworthy way to make better the rate of heat transfer in solar collectors. Moreover, recently utilizing thermoelectric generators are widely studied to direct the conversion of heat into electricity. The objective of the present study is to deal with a novel multigeneration system that includes a nanofluid-based parabolic trough collector integrated with a quadruple effect absorption refrigeration cycle (cooling), a thermoelectric generator (power), a PEM electrolyzer (hydrogen), vapor generator and domestic water heater. A parametric study is accomplished to consider the effect of significant parameters such as the volume concentration of nanoparticles, solar radiation, absorption system’s generator load, strong solution concentration","PeriodicalId":14591,"journal":{"name":"iranica journal of energy and environment","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iranica journal of energy and environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ijee.2024.15.01.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The exploitation of nanofluids is the most noteworthy way to make better the rate of heat transfer in solar collectors. Moreover, recently utilizing thermoelectric generators are widely studied to direct the conversion of heat into electricity. The objective of the present study is to deal with a novel multigeneration system that includes a nanofluid-based parabolic trough collector integrated with a quadruple effect absorption refrigeration cycle (cooling), a thermoelectric generator (power), a PEM electrolyzer (hydrogen), vapor generator and domestic water heater. A parametric study is accomplished to consider the effect of significant parameters such as the volume concentration of nanoparticles, solar radiation, absorption system’s generator load, strong solution concentration