Some properties of Jost functions for Schrödinger equation with distribution potential

IF 0.5 Q3 MATHEMATICS
R. Kulaev, A. Shabat
{"title":"Some properties of Jost functions for Schrödinger equation with distribution potential","authors":"R. Kulaev, A. Shabat","doi":"10.13108/2017-9-4-59","DOIUrl":null,"url":null,"abstract":"The work is devoted to the substantial extension of the space of the potentials in the inverse scattering problem for the linear Schrödinger equation on the real axis. We consider the Schrödinger operator with a potential in the space of generalized functions. This extension includes not only the potential like delta function, but also exotic cases like Cantor functions. In this way we establish the conditions on existence and uniqueness of Jost solutions. We study their analytic properties. We provide some estimates for the Jost solutions and their derivatives. We show that the Schrödinger equation with the distribution potential can be uniformly approximated by the equations with smooth potentials.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"37 1","pages":"59-71"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-4-59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

The work is devoted to the substantial extension of the space of the potentials in the inverse scattering problem for the linear Schrödinger equation on the real axis. We consider the Schrödinger operator with a potential in the space of generalized functions. This extension includes not only the potential like delta function, but also exotic cases like Cantor functions. In this way we establish the conditions on existence and uniqueness of Jost solutions. We study their analytic properties. We provide some estimates for the Jost solutions and their derivatives. We show that the Schrödinger equation with the distribution potential can be uniformly approximated by the equations with smooth potentials.
具有分布势的Schrödinger方程的Jost函数的一些性质
本文研究了线性Schrödinger方程在实轴上逆散射问题中势空间的实质性扩展。我们考虑广义函数空间中具有势的Schrödinger算子。这个扩展不仅包括像delta函数这样的潜在函数,还包括像Cantor函数这样的特殊情况。由此建立了Jost解的存在唯一性条件。我们研究它们的解析性质。我们提供了Jost解及其导数的一些估计。我们证明了具有分布势的Schrödinger方程可以被具有光滑势的方程一致地近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信