Design of a Non-negative Neural Network to Improve on NMF

Filip Wen-Fwu Tsai, Alireza M. Javid, S. Chatterjee
{"title":"Design of a Non-negative Neural Network to Improve on NMF","authors":"Filip Wen-Fwu Tsai, Alireza M. Javid, S. Chatterjee","doi":"10.23919/Eusipco47968.2020.9287668","DOIUrl":null,"url":null,"abstract":"For prediction of a non-negative target signal using a non-negative input, we design a feed-forward neural network to achieve a better performance than a non-negative matrix factorization (NMF) algorithm. We provide a mathematical relation between the neural network and NMF. The architecture of the neural network is built on a property of rectified-linear-unit (ReLU) activation function and a convex optimization layer-wise training approach. For an illustrative example, we choose a speech enhancement application where a clean speech spectrum is estimated from a noisy spectrum.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"38 1","pages":"461-465"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For prediction of a non-negative target signal using a non-negative input, we design a feed-forward neural network to achieve a better performance than a non-negative matrix factorization (NMF) algorithm. We provide a mathematical relation between the neural network and NMF. The architecture of the neural network is built on a property of rectified-linear-unit (ReLU) activation function and a convex optimization layer-wise training approach. For an illustrative example, we choose a speech enhancement application where a clean speech spectrum is estimated from a noisy spectrum.
改进NMF的非负神经网络设计
为了使用非负输入预测非负目标信号,我们设计了一种前馈神经网络,以获得比非负矩阵分解(NMF)算法更好的性能。我们给出了神经网络和NMF之间的数学关系。神经网络的结构是建立在整流线性单元(ReLU)激活函数和凸优化分层训练方法的基础上的。作为一个说明性的例子,我们选择一个语音增强应用,其中从噪声频谱估计干净的语音频谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信