Back Pressure Equal Channel Angular Pressing of Consolidate Pure Al Particles

L. Yinglong, He Lizi, Z. Ling
{"title":"Back Pressure Equal Channel Angular Pressing of Consolidate Pure Al Particles","authors":"L. Yinglong, He Lizi, Z. Ling","doi":"10.11648/J.IJMSA.20200901.11","DOIUrl":null,"url":null,"abstract":"In this study, pure aluminum particles were successfully consolidated to fully dense bulk material by back pressure equal channel angular pressing (BE-ECAP) at room temperature, the evolutions of microstructure and densification mechanism were systematically investigated using an FEI-TECNAI G20 transmission electron microscope (TEM) operating at 200kV, FEI field-emission scanning electron microscope (FE-SEM) and hardness testing. The results indicated that the strong bulk materials from particles were successfully produced. After 4 BE-ECAP passes, the present samples show finer grains with the average grain size of ~10μm, the density of the sample was considerably higher compared to those of the materials that had undergone ECAP without back pressure, and was approach to the theoretical density of pure Al. This was related to the combination of hydrostatic pressure, shear deformation and strain accumulation. The mechanisms of grain refinement was the dislocation generated inside grains moves towards the grain boundary continuously, and accumulates, tangles annihilates at the grain boundaries, which resulting in the grains continuously fragmented and refined.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMSA.20200901.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, pure aluminum particles were successfully consolidated to fully dense bulk material by back pressure equal channel angular pressing (BE-ECAP) at room temperature, the evolutions of microstructure and densification mechanism were systematically investigated using an FEI-TECNAI G20 transmission electron microscope (TEM) operating at 200kV, FEI field-emission scanning electron microscope (FE-SEM) and hardness testing. The results indicated that the strong bulk materials from particles were successfully produced. After 4 BE-ECAP passes, the present samples show finer grains with the average grain size of ~10μm, the density of the sample was considerably higher compared to those of the materials that had undergone ECAP without back pressure, and was approach to the theoretical density of pure Al. This was related to the combination of hydrostatic pressure, shear deformation and strain accumulation. The mechanisms of grain refinement was the dislocation generated inside grains moves towards the grain boundary continuously, and accumulates, tangles annihilates at the grain boundaries, which resulting in the grains continuously fragmented and refined.
固结纯铝颗粒的背压等通道角压
本研究采用背压等径角压(BE-ECAP)方法在室温下将纯铝颗粒成功固结为致密块状材料,利用200kV的FEI- tecnai G20透射电镜(TEM)、FEI场发射扫描电镜(FE-SEM)和硬度测试系统研究了其微观组织演变和致密化机理。结果表明,该方法成功地制备了由颗粒组成的强块状材料。经过4次BE-ECAP处理后,样品晶粒细化,平均晶粒尺寸为~10μm,样品密度明显高于无背压ECAP处理的材料,接近纯Al的理论密度,这与静水压力、剪切变形和应变积累的综合作用有关。晶粒细化的机制是晶粒内部产生的位错不断向晶界移动,并在晶界处积累、缠结湮灭,导致晶粒不断破碎细化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信