{"title":"A Radiological Risk Assessment of 226Ra, 228Ra and 40K Isotopes in Tilapia Fish and its Granitic Environment in Singida Municipality, Tanzania","authors":"Amin R. Kazoka, J. Mwalilino, Paul E Mtoni","doi":"10.3390/earth4030028","DOIUrl":null,"url":null,"abstract":"Consumption of fish containing elevated levels of radionuclides can lead to undesirable health effects for consumers. People in the Singida Municipality harvest fish from lakes and ponds of granite rocks which are linked with hazardous radioisotopes that may be bio-concentrated by fishes they consume. Currently, no study has ascertained the levels of radioisotopes in fish from these environments. This study was carried out to analyse the radioactivity levels of 226Ra, 228Ra and 40K isotopes in order to assess the radiological risk associated with Tilapia fish consumption and its environment in Singida Municipality. Some 51 samples, which included water (20), sediment (20), Nile tilapia (8) and Manyara tilapia (3), were randomly sampled and composited; then, they were analysed using a high-purity germanium (HPGe) detector, between May and June 2022. The results revealed that (i) the activity levels of 228Ra were below the detection limit for fish and water samples, while in sediment, the combined activity of 228Ra was within the acceptable international levels; (ii) the mean activity concentrations of 226Ra and 40K in all other samples were within the recommended levels; (iii) the activities of radionuclides in the samples analysed were high in sediments, followed by fish, and lastly water; (iv) the bioaccumulation results show that only 40K was bio-accumulated (with 1.26 in Nile tilapia), while other radionuclides (226Ra, 228Ra) were not bio-accumulated; (vi) the radionuclide transfer from water to fish was higher compared to the radionuclide transfer from sediment to fish; (vii) the human effective doses due to consumption of Nile tilapia and Manyara tilapia were 0.00973 and 0.005 mSv/y, respectively, which is below the 1 mSv/y international limit. These findings therefore show that the current levels of radioactivity in fish in the study area do not pose a significant radiological risk to fish consumers. However, more studies on other types of fish are recommended.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/earth4030028","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Consumption of fish containing elevated levels of radionuclides can lead to undesirable health effects for consumers. People in the Singida Municipality harvest fish from lakes and ponds of granite rocks which are linked with hazardous radioisotopes that may be bio-concentrated by fishes they consume. Currently, no study has ascertained the levels of radioisotopes in fish from these environments. This study was carried out to analyse the radioactivity levels of 226Ra, 228Ra and 40K isotopes in order to assess the radiological risk associated with Tilapia fish consumption and its environment in Singida Municipality. Some 51 samples, which included water (20), sediment (20), Nile tilapia (8) and Manyara tilapia (3), were randomly sampled and composited; then, they were analysed using a high-purity germanium (HPGe) detector, between May and June 2022. The results revealed that (i) the activity levels of 228Ra were below the detection limit for fish and water samples, while in sediment, the combined activity of 228Ra was within the acceptable international levels; (ii) the mean activity concentrations of 226Ra and 40K in all other samples were within the recommended levels; (iii) the activities of radionuclides in the samples analysed were high in sediments, followed by fish, and lastly water; (iv) the bioaccumulation results show that only 40K was bio-accumulated (with 1.26 in Nile tilapia), while other radionuclides (226Ra, 228Ra) were not bio-accumulated; (vi) the radionuclide transfer from water to fish was higher compared to the radionuclide transfer from sediment to fish; (vii) the human effective doses due to consumption of Nile tilapia and Manyara tilapia were 0.00973 and 0.005 mSv/y, respectively, which is below the 1 mSv/y international limit. These findings therefore show that the current levels of radioactivity in fish in the study area do not pose a significant radiological risk to fish consumers. However, more studies on other types of fish are recommended.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.