{"title":"Adsorption of Methylene blue (MB) dye Using NiO-SiO2NPs Synthesized from Aqueous Solutions: Optimization, kinetic and equilibrium studies","authors":"Shanaz Davoudi","doi":"10.30492/IJCCE.2021.526904.4630","DOIUrl":null,"url":null,"abstract":"The applicability of the synthesized NiO-SiO2NPs as a novel adsorbent for eliminating Methylene Blue (MB) dye from aqueous media was investigated. Various techniques including BET, FT-IR, XRD, SEM and EDS were used to characterize this novel adsorbent. The investigation showed the applicability of NiO-SiO2NPs as an available, suitable and low-cost adsorbent for proper removing of MB dye from aqueous media. The effect of pH, adsorbent dosage (dose), initial MB dye concentration (C0) contact time (tc) and temperature (T) on the removal percentage (Ad%) of MB dye onto NiO-SiO2NPs was studied and the optimum value of each factor was determined (pH=7, dose=0.1g, C0=30 mg/L, tc=15 min and T=298.0 K). The experimental equilibrium data was fitted to the conventional isotherm models and accordingly Langmuir isotherm has good applicability for the explanation of experimental data with maximum adsorption capacity of the MB dye for SiO2 and NiO-SiO2NPs were roughly 117.0 and 140.0 mg/g respectively. Kinetics experiments were performed to investigate the adsorption kinetics, the pseudo-second-order kinetics coincided quite with the kinetic results. The thermodynamic behavior of the adsorption process was studied by considering the effect of temperature on the adsorption capacity, where the results showed that the process is spontaneous (∆G, Ad 0<0) at used temperature range and exothermic (∆H, Ad 0<0) with ∆S, Ad 0<0. Based on the magnitude of ∆H, Ad 0<0, it was concluded that the studied adsorption process is a physisorption one.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"126 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.526904.4630","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The applicability of the synthesized NiO-SiO2NPs as a novel adsorbent for eliminating Methylene Blue (MB) dye from aqueous media was investigated. Various techniques including BET, FT-IR, XRD, SEM and EDS were used to characterize this novel adsorbent. The investigation showed the applicability of NiO-SiO2NPs as an available, suitable and low-cost adsorbent for proper removing of MB dye from aqueous media. The effect of pH, adsorbent dosage (dose), initial MB dye concentration (C0) contact time (tc) and temperature (T) on the removal percentage (Ad%) of MB dye onto NiO-SiO2NPs was studied and the optimum value of each factor was determined (pH=7, dose=0.1g, C0=30 mg/L, tc=15 min and T=298.0 K). The experimental equilibrium data was fitted to the conventional isotherm models and accordingly Langmuir isotherm has good applicability for the explanation of experimental data with maximum adsorption capacity of the MB dye for SiO2 and NiO-SiO2NPs were roughly 117.0 and 140.0 mg/g respectively. Kinetics experiments were performed to investigate the adsorption kinetics, the pseudo-second-order kinetics coincided quite with the kinetic results. The thermodynamic behavior of the adsorption process was studied by considering the effect of temperature on the adsorption capacity, where the results showed that the process is spontaneous (∆G, Ad 0<0) at used temperature range and exothermic (∆H, Ad 0<0) with ∆S, Ad 0<0. Based on the magnitude of ∆H, Ad 0<0, it was concluded that the studied adsorption process is a physisorption one.
研究了合成的NiO-SiO2NPs作为新型吸附剂去除水中亚甲基蓝染料的适用性。采用BET、FT-IR、XRD、SEM、EDS等技术对该吸附剂进行了表征。研究表明,NiO-SiO2NPs是一种有效的、合适的、低成本的吸附剂,可用于去除水中的MB染料。研究了pH、吸附剂用量(dose)、MB染料初始浓度(C0)、接触时间(tc)和温度(T)对MB染料在NiO-SiO2NPs上去除率(Ad%)的影响,并确定了各因素的最优值(pH=7、剂量=0.1g、C0=30 mg/L、tc=15 min, T=298.0 K)。实验平衡数据符合常规等温线模型,因此Langmuir等温线对实验数据的解释适用性较好,MB染料对SiO2和NiO-SiO2NPs的最大吸附量分别约为117.0和140.0 mg/g。通过动力学实验研究了吸附动力学,拟二级动力学与动力学结果吻合较好。考虑温度对吸附量的影响,研究了吸附过程的热力学行为,结果表明,在使用温度范围内,吸附过程是自发的(∆G, Ad 0<0),在∆S, Ad 0<0时,吸附过程是放热的(∆H, Ad 0<0)。根据∆H, Ad 0<0的大小,可知所研究的吸附过程为物理吸附过程。
期刊介绍:
The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.