Electrochemical characterization of a novel multicomponent Al75Mg5Li10Zn5Cu5 low entropy alloy in different pH environments

P. Sudha, K. Tun, M. Gupta, A. Mourad, S. Vincent
{"title":"Electrochemical characterization of a novel multicomponent Al75Mg5Li10Zn5Cu5 low entropy alloy in different pH environments","authors":"P. Sudha, K. Tun, M. Gupta, A. Mourad, S. Vincent","doi":"10.1002/maco.202213103","DOIUrl":null,"url":null,"abstract":"The corrosion behavior and microstructure of a novel multicomponent Al75Mg5Li10Zn5Cu5 low entropy alloy (Al LEA) were investigated in different Cl− ion concentrations of acidic (HCl), neutral (NaCl), and alkaline (NaOH) media. The study was performed by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The surface morphologies and chemical composition were examined by using a scanning electron microscope with energy‐dispersive X‐ray spectroscopy. The results indicated that with the increase of the Cl− ion concentrations, the degradation rate with more pits and cracks was observed in both acidic and neutral media. This is due to the breakdown of Al(OH)3/Al2O3 passive layer. In an alkaline medium, increasing of pH value from pH 8 to pH 12, there was a slight increment in corrosion rate (CR). However, the corrosion trend was not witnessed on alloy surfaces because of the formation of Mg32(Al, Zn)49 and AlCu phases, which are more stable than α‐Al. The order of Al‐LEA CR is found to be HCl > NaCl > NaOH. The results obtained from the polarization and EIS were in good agreement with each other.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"64 1","pages":"2071 - 2083"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/maco.202213103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The corrosion behavior and microstructure of a novel multicomponent Al75Mg5Li10Zn5Cu5 low entropy alloy (Al LEA) were investigated in different Cl− ion concentrations of acidic (HCl), neutral (NaCl), and alkaline (NaOH) media. The study was performed by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The surface morphologies and chemical composition were examined by using a scanning electron microscope with energy‐dispersive X‐ray spectroscopy. The results indicated that with the increase of the Cl− ion concentrations, the degradation rate with more pits and cracks was observed in both acidic and neutral media. This is due to the breakdown of Al(OH)3/Al2O3 passive layer. In an alkaline medium, increasing of pH value from pH 8 to pH 12, there was a slight increment in corrosion rate (CR). However, the corrosion trend was not witnessed on alloy surfaces because of the formation of Mg32(Al, Zn)49 and AlCu phases, which are more stable than α‐Al. The order of Al‐LEA CR is found to be HCl > NaCl > NaOH. The results obtained from the polarization and EIS were in good agreement with each other.
新型多组分Al75Mg5Li10Zn5Cu5低熵合金在不同pH环境下的电化学表征
研究了一种新型多组分Al75Mg5Li10Zn5Cu5低熵合金(Al LEA)在不同Cl -离子浓度的酸性(HCl)、中性(NaCl)和碱性(NaOH)介质中的腐蚀行为和显微组织。采用动电位极化和电化学阻抗谱(EIS)方法进行研究。利用能量色散X射线能谱扫描电子显微镜对其表面形貌和化学成分进行了研究。结果表明:在酸性和中性介质中,随着Cl−离子浓度的增加,降解速度加快,出现更多的凹坑和裂纹;这是由于Al(OH)3/Al2O3钝化层的击穿。在碱性介质中,pH值从pH 8增加到pH 12,腐蚀速率(CR)略有增加。然而,由于形成了比α - Al更稳定的Mg32(Al, Zn)49和AlCu相,合金表面没有出现腐蚀趋势。Al - LEA CR的顺序为HCl > NaCl > NaOH。极化结果与EIS结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信