Cost Effective Approach for Mapping Prosopis Invasion in Arid South Africa Using SPOT-6 Imagery and Two Machine Learning Classifiers

Nyasha Mureriwa, E. Adam, Adewale Samuel Adelabu
{"title":"Cost Effective Approach for Mapping Prosopis Invasion in Arid South Africa Using SPOT-6 Imagery and Two Machine Learning Classifiers","authors":"Nyasha Mureriwa, E. Adam, Adewale Samuel Adelabu","doi":"10.1109/IGARSS.2019.8900609","DOIUrl":null,"url":null,"abstract":"This study evaluates the use of SPOT-6 data in conjunction with two machine learning classifiers, namely, Random Forest (RF) and Support Vector Machines (SVM) to map Prosopis glandulosa, its co-existing acacia species and other land-cover types in an arid South African environment. This highly invasive species has been difficult to control using physical, chemical and biological methods because of insufficient knowledge of the species dynamic and lack of spatial data. Results show that it is possible to distinguish Prosopis glandulosa from coexisting Acacia karoo and Acacia mellifera as well as other general land cover types. Classification using SVM obtained a higher overall accuracy of 78.66% (Kappa of 0.7428) whilst RF obtained a lower classification accuracy of 69.93% (Kappa of 0.6331). The high accuracies obtained show the potential to map the invasive species spread on a large scale. This can assist monitoring and planning against future invasions.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"116 1","pages":"3724-3727"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8900609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study evaluates the use of SPOT-6 data in conjunction with two machine learning classifiers, namely, Random Forest (RF) and Support Vector Machines (SVM) to map Prosopis glandulosa, its co-existing acacia species and other land-cover types in an arid South African environment. This highly invasive species has been difficult to control using physical, chemical and biological methods because of insufficient knowledge of the species dynamic and lack of spatial data. Results show that it is possible to distinguish Prosopis glandulosa from coexisting Acacia karoo and Acacia mellifera as well as other general land cover types. Classification using SVM obtained a higher overall accuracy of 78.66% (Kappa of 0.7428) whilst RF obtained a lower classification accuracy of 69.93% (Kappa of 0.6331). The high accuracies obtained show the potential to map the invasive species spread on a large scale. This can assist monitoring and planning against future invasions.
基于SPOT-6图像和两种机器学习分类器的南非干旱地区拟南藜入侵地图绘制方法
本研究评估了SPOT-6数据与两种机器学习分类器(即随机森林(RF)和支持向量机(SVM))结合使用的情况,以绘制南非干旱环境中Prosopis glandulosa,其共存的金合欢物种和其他土地覆盖类型。由于对其物种动态认识不足和缺乏空间数据,难以采用物理、化学和生物方法对其进行控制。结果表明,在不同土地覆被类型中,有可能将腺拟槐与共生的金合欢、美洲金合欢以及其他一般土地覆被类型区分开来。SVM分类总体准确率较高,为78.66% (Kappa为0.7428),而RF分类准确率较低,为69.93% (Kappa为0.6331)。所获得的高准确度显示了在大范围内绘制入侵物种分布图的潜力。这有助于监控和规划未来的入侵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信