Factor analysis of Laplacian approach for speaker recognition

Jinchao Yang, Chunyan Liang, L. Yang, Hongbin Suo, Junjie Wang, Yonghong Yan
{"title":"Factor analysis of Laplacian approach for speaker recognition","authors":"Jinchao Yang, Chunyan Liang, L. Yang, Hongbin Suo, Junjie Wang, Yonghong Yan","doi":"10.1109/ICASSP.2012.6288850","DOIUrl":null,"url":null,"abstract":"In this study, we introduce a new factor analysis of Laplacian approach to speaker recognition under the support vector machine (SVM) framework. The Laplacian-projected supervector from our proposed Laplacian approach, which finds an embedding that preserves local information by locality preserving projections (LPP), is believed to contain speaker dependent information. The proposed method was compared with the state-of-the-art total variability approach on 2010 National Institute of Standards and Technology (NIST) Speaker Recognition Evaluation (SRE) corpus. According to the compared results, our proposed method is effective.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this study, we introduce a new factor analysis of Laplacian approach to speaker recognition under the support vector machine (SVM) framework. The Laplacian-projected supervector from our proposed Laplacian approach, which finds an embedding that preserves local information by locality preserving projections (LPP), is believed to contain speaker dependent information. The proposed method was compared with the state-of-the-art total variability approach on 2010 National Institute of Standards and Technology (NIST) Speaker Recognition Evaluation (SRE) corpus. According to the compared results, our proposed method is effective.
说话人识别的拉普拉斯因子分析
在本研究中,我们在支持向量机(SVM)框架下引入一种新的拉普拉斯因子分析方法来识别说话人。我们提出的拉普拉斯投影超向量,通过局部保留投影(LPP)找到一个保留局部信息的嵌入,被认为包含说话人相关信息。在2010年美国国家标准与技术研究院(NIST)说话人识别评估(SRE)语料库上,将该方法与最先进的总变异性方法进行了比较。对比结果表明,本文提出的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信