Toughness and isolated toughness conditions for path-factor critical covered graphs

Guowei Dai
{"title":"Toughness and isolated toughness conditions for path-factor critical covered graphs","authors":"Guowei Dai","doi":"10.1051/ro/2023039","DOIUrl":null,"url":null,"abstract":"Given a graph $G$ and an integer $k\\geq2$. A spanning subgraph $H$ of $G$ is called a $P_{\\geq k}$-factor of $G$ if every component of $H$ is a path with at least $k$ vertices. A graph $G$ is said to be $P_{\\geq k}$-factor covered if for any $e\\in E(G)$, $G$ admits a $P_{\\geq k}$-factor including $e$. A graph $G$ is called a $(P_{\\geq k},n)$-factor critical covered graph if $G-V'$ is $P_{\\geq k}$-factor covered for any $V'\\subseteq V(G)$ with $|V'|=n$.\nIn this paper, we study the toughness and isolated toughness conditions for $(P_{\\geq k},n)$-factor critical covered graphs, where $k=2,3$. Let $G$ be a $(n+1)$-connected graph. It is shown that\n(i) $G$ is a $(P_{\\geq 2},n)$-factor critical covered graph if its toughness $\\tau(G)>\\frac{n+2}{3}$;\n(ii) $G$ is a $(P_{\\geq 2},n)$-factor critical covered graph if its isolated toughness $I(G)>\\frac{n+1}{2}$;\n(iii) $G$ is a $(P_{\\geq 3},n)$-factor critical covered graph if $\\tau(G)>\\frac{n+2}{3}$ and $|V(G)|\\geq n+3$;\n(iv) $G$ is a $(P_{\\geq 3},n)$-factor critical covered graph if $I(G)>\\frac{n+3}{2}$ and $|V(G)|\\geq n+3$. \nFurthermore, we claim that these conditions are best possible in some sense.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Given a graph $G$ and an integer $k\geq2$. A spanning subgraph $H$ of $G$ is called a $P_{\geq k}$-factor of $G$ if every component of $H$ is a path with at least $k$ vertices. A graph $G$ is said to be $P_{\geq k}$-factor covered if for any $e\in E(G)$, $G$ admits a $P_{\geq k}$-factor including $e$. A graph $G$ is called a $(P_{\geq k},n)$-factor critical covered graph if $G-V'$ is $P_{\geq k}$-factor covered for any $V'\subseteq V(G)$ with $|V'|=n$. In this paper, we study the toughness and isolated toughness conditions for $(P_{\geq k},n)$-factor critical covered graphs, where $k=2,3$. Let $G$ be a $(n+1)$-connected graph. It is shown that (i) $G$ is a $(P_{\geq 2},n)$-factor critical covered graph if its toughness $\tau(G)>\frac{n+2}{3}$; (ii) $G$ is a $(P_{\geq 2},n)$-factor critical covered graph if its isolated toughness $I(G)>\frac{n+1}{2}$; (iii) $G$ is a $(P_{\geq 3},n)$-factor critical covered graph if $\tau(G)>\frac{n+2}{3}$ and $|V(G)|\geq n+3$; (iv) $G$ is a $(P_{\geq 3},n)$-factor critical covered graph if $I(G)>\frac{n+3}{2}$ and $|V(G)|\geq n+3$.  Furthermore, we claim that these conditions are best possible in some sense.
路径因子临界覆盖图的韧性和孤立韧性条件
给定一个图 $G$ 一个整数 $k\geq2$. 生成子图 $H$ 的 $G$ 叫做a $P_{\geq k}$-因子 $G$ 如果每一个分量 $H$ 是不是一条路至少带着 $k$ 顶点。图表 $G$ 据说是 $P_{\geq k}$-如果有任何因素 $e\in E(G)$, $G$ 承认。 $P_{\geq k}$-因素包括 $e$. 图表 $G$ 叫做a $(P_{\geq k},n)$-因子关键覆盖图 $G-V'$ 是 $P_{\geq k}$-任何因素涵盖 $V'\subseteq V(G)$ 有 $|V'|=n$在本文中,我们研究了材料的韧性和孤立韧性条件 $(P_{\geq k},n)$-关键因子覆盖图,其中 $k=2,3$. 让 $G$ 做一个 $(n+1)$-连通图。可以看出(i) $G$ 是? $(P_{\geq 2},n)$-因子临界覆盖图如果它的韧性 $\tau(G)>\frac{n+2}{3}$(ii) $G$ 是? $(P_{\geq 2},n)$-因子临界覆盖图,如果它的隔离韧性 $I(G)>\frac{n+1}{2}$(三) $G$ 是? $(P_{\geq 3},n)$-因子关键覆盖图 $\tau(G)>\frac{n+2}{3}$ 和 $|V(G)|\geq n+3$(四) $G$ 是? $(P_{\geq 3},n)$-因子关键覆盖图 $I(G)>\frac{n+3}{2}$ 和 $|V(G)|\geq n+3$。此外,我们声称这些条件在某种意义上是最佳可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信