Chalcogenide Thin Film Substrate for Protein Biochip Application

A. Tver’yanovich, A. Vasil’eva, A. Belykh, E. Borisov, Y. Tver’yanovich
{"title":"Chalcogenide Thin Film Substrate for Protein Biochip Application","authors":"A. Tver’yanovich, A. Vasil’eva, A. Belykh, E. Borisov, Y. Tver’yanovich","doi":"10.1155/2014/152734","DOIUrl":null,"url":null,"abstract":"Diagnostic of pathogen in the human biological liquids by biochip technology is an intensively developed methodic now. The main and the most important part of biochip is the adsorbing layer. Adsorption properties of chalcogenide films to protein (rat monoclonal antibodies) were tested. The films were prepared by conventional thermal deposition technique and by pulsed laser deposition technique. Two methods were used for forming in the films the two-dimensional map of adsorbing places for probe testing. One is using photoresist properties of chalcogenide films; another is using photo-induced oxidation of chalcogenide films. It was shown Good selectivity of the developed structures to protein markers was shown.","PeriodicalId":15303,"journal":{"name":"Journal of Chemical Technology & Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Technology & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/152734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Diagnostic of pathogen in the human biological liquids by biochip technology is an intensively developed methodic now. The main and the most important part of biochip is the adsorbing layer. Adsorption properties of chalcogenide films to protein (rat monoclonal antibodies) were tested. The films were prepared by conventional thermal deposition technique and by pulsed laser deposition technique. Two methods were used for forming in the films the two-dimensional map of adsorbing places for probe testing. One is using photoresist properties of chalcogenide films; another is using photo-induced oxidation of chalcogenide films. It was shown Good selectivity of the developed structures to protein markers was shown.
用于蛋白质生物芯片的硫属化物薄膜衬底
利用生物芯片技术诊断人体生物液体中的病原体是目前发展较快的一种方法。生物芯片的主要和最重要的部分是吸附层。测定了硫属膜对蛋白质(大鼠单克隆抗体)的吸附性能。采用常规热沉积技术和脉冲激光沉积技术制备薄膜。采用两种方法在薄膜中形成吸附位置的二维图,用于探针测试。一种是利用硫系薄膜的光刻胶特性;另一种是利用光诱导氧化硫族化物薄膜。结果表明,所构建的结构对蛋白质标记物具有良好的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信