{"title":"A Distributed Control Approach Based on Game Theory for the Optimal Energy Scheduling of a Residential Microgrid with Shared Generation and Storage","authors":"Raffaele Carli, M. Dotoli, Vittorio Palmisano","doi":"10.1109/COASE.2019.8843141","DOIUrl":null,"url":null,"abstract":"This paper presents a distributed control approach based on game theory for the energy scheduling of demand-side consumers sharing energy production and storage while purchasing further energy from the grid. The interaction between the controllers of consumers’ loads and the manager of shared energy resources is modeled as a two-level game. The competition among consumers is formulated as a noncooperative game, while the interaction between the consumers’ loads and the shared resources manager is formulated as a cooperative game. optimization problems are stated for each player to determine their own optimal strategies. The algorithms for loads controllers and shared resources’ manager are implemented through a distributed approach. Numerical experiments show the effectiveness of the proposed scheme.","PeriodicalId":6695,"journal":{"name":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","volume":"19 1","pages":"960-965"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2019.8843141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents a distributed control approach based on game theory for the energy scheduling of demand-side consumers sharing energy production and storage while purchasing further energy from the grid. The interaction between the controllers of consumers’ loads and the manager of shared energy resources is modeled as a two-level game. The competition among consumers is formulated as a noncooperative game, while the interaction between the consumers’ loads and the shared resources manager is formulated as a cooperative game. optimization problems are stated for each player to determine their own optimal strategies. The algorithms for loads controllers and shared resources’ manager are implemented through a distributed approach. Numerical experiments show the effectiveness of the proposed scheme.