Multiple change-point audio segmentation and classification using an MDL-based Gaussian model

Chung-Hsien Wu, Chia-Hsin Hsieh
{"title":"Multiple change-point audio segmentation and classification using an MDL-based Gaussian model","authors":"Chung-Hsien Wu, Chia-Hsin Hsieh","doi":"10.1109/TSA.2005.852988","DOIUrl":null,"url":null,"abstract":"This study presents an approach for segmenting and classifying an audio stream based on audio type. First, a silence deletion procedure is employed to remove silence segments in the audio stream. A minimum description length (MDL)-based Gaussian model is then proposed to statistically characterize the audio features. Audio segmentation segments the audio stream into a sequence of homogeneous subsegments using the MDL-based Gaussian model. A hierarchical threshold-based classifier is then used to classify each subsegment into different audio types. Finally, a heuristic method is adopted to smooth the subsegment sequence and provide the final segmentation and classification results. Experimental results indicate that for TDT-3 news broadcast, a missed detection rate (MDR) of 0.1 and a false alarm rate (FAR) of 0.14 were achieved for audio segmentation. Given the same MDR and FAR values, segment-based audio classification achieved a better classification accuracy of 88% compared to a clip-based approach.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"524 1","pages":"647-657"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2005.852988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

This study presents an approach for segmenting and classifying an audio stream based on audio type. First, a silence deletion procedure is employed to remove silence segments in the audio stream. A minimum description length (MDL)-based Gaussian model is then proposed to statistically characterize the audio features. Audio segmentation segments the audio stream into a sequence of homogeneous subsegments using the MDL-based Gaussian model. A hierarchical threshold-based classifier is then used to classify each subsegment into different audio types. Finally, a heuristic method is adopted to smooth the subsegment sequence and provide the final segmentation and classification results. Experimental results indicate that for TDT-3 news broadcast, a missed detection rate (MDR) of 0.1 and a false alarm rate (FAR) of 0.14 were achieved for audio segmentation. Given the same MDR and FAR values, segment-based audio classification achieved a better classification accuracy of 88% compared to a clip-based approach.
使用基于mdl的高斯模型的多变化点音频分割和分类
本文提出了一种基于音频类型的音频流分割和分类方法。首先,采用静默删除过程去除音频流中的静默段。然后提出了一种基于最小描述长度(MDL)的高斯模型来统计表征音频特征。音频分割使用基于mdl的高斯模型将音频流分割成一系列同质子段。然后使用基于层次阈值的分类器将每个子段分类为不同的音频类型。最后,采用启发式方法对子片段序列进行平滑处理,给出最终的分割分类结果。实验结果表明,对于TDT-3新闻广播,该方法对音频进行分割的漏检率(MDR)为0.1,虚警率(FAR)为0.14。在相同的MDR和FAR值下,基于片段的音频分类比基于片段的方法获得了88%的更好的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信