A Non-local Low Rank and Total Variation Approach for Depth Image Estimation

Uyen Nguyen, Truong Giang Tong, Tat Thang Hoa, Dai Duong Ha, Van Ha Tang
{"title":"A Non-local Low Rank and Total Variation Approach for Depth Image Estimation","authors":"Uyen Nguyen, Truong Giang Tong, Tat Thang Hoa, Dai Duong Ha, Van Ha Tang","doi":"10.1109/RIVF51545.2021.9642135","DOIUrl":null,"url":null,"abstract":"Accurate depth reconstruction is vital for numerous applications including autonomous vehicles, virtual reality, and robot perception. However, the depth imaging is challenging because of limited hardware operations, resource-constrained limitations, and incomplete data measurements. To address such shortcomings, this paper introduces an imaging model for efficient depth image estimation from incomplete depth pixels using non-local low-rank (NLLR) and total variation (TV) representations. The motivation is that NLLR is used to model global similar structure among depth patches, and the TV is incorporated to capture the correlations among local depth pixels. We reformulate the problem of depth reconstruction as a regularized least squares minimization problem with the non-local LR and TV regularizers. Furthermore, this paper proposes an iterative algorithm using the alternating direction method of multipliers (ADMM) to solve the optimization model, yielding an estimate of the depth map from far reduced data points. Experimental results on benchmark datasets validate the efficiency of the proposed approach.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"125 22 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Accurate depth reconstruction is vital for numerous applications including autonomous vehicles, virtual reality, and robot perception. However, the depth imaging is challenging because of limited hardware operations, resource-constrained limitations, and incomplete data measurements. To address such shortcomings, this paper introduces an imaging model for efficient depth image estimation from incomplete depth pixels using non-local low-rank (NLLR) and total variation (TV) representations. The motivation is that NLLR is used to model global similar structure among depth patches, and the TV is incorporated to capture the correlations among local depth pixels. We reformulate the problem of depth reconstruction as a regularized least squares minimization problem with the non-local LR and TV regularizers. Furthermore, this paper proposes an iterative algorithm using the alternating direction method of multipliers (ADMM) to solve the optimization model, yielding an estimate of the depth map from far reduced data points. Experimental results on benchmark datasets validate the efficiency of the proposed approach.
一种非局部低秩全变分深度图像估计方法
精确的深度重建对于自动驾驶汽车、虚拟现实和机器人感知等众多应用至关重要。然而,由于有限的硬件操作、资源限制和不完整的数据测量,深度成像具有挑战性。为了解决这些缺点,本文引入了一种利用非局部低秩(NLLR)和全变分(TV)表示从不完全深度像素高效估计深度图像的成像模型。其动机是使用NLLR来模拟深度块之间的全局相似结构,并结合TV来捕获局部深度像素之间的相关性。我们将深度重构问题重新表述为具有非局部LR和TV正则化器的正则化最小二乘最小化问题。在此基础上,提出了一种利用乘法器交替方向法(ADMM)求解优化模型的迭代算法,通过大大减少的数据点得到深度图的估计。在基准数据集上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信