T. Tuytelaars, Mario Fritz, Kate Saenko, Trevor Darrell
{"title":"The NBNN kernel","authors":"T. Tuytelaars, Mario Fritz, Kate Saenko, Trevor Darrell","doi":"10.1109/ICCV.2011.6126449","DOIUrl":null,"url":null,"abstract":"Naive Bayes Nearest Neighbor (NBNN) has recently been proposed as a powerful, non-parametric approach for object classification, that manages to achieve remarkably good results thanks to the avoidance of a vector quantization step and the use of image-to-class comparisons, yielding good generalization. In this paper, we introduce a kernelized version of NBNN. This way, we can learn the classifier in a discriminative setting. Moreover, it then becomes straightforward to combine it with other kernels. In particular, we show that our NBNN kernel is complementary to standard bag-of-features based kernels, focussing on local generalization as opposed to global image composition. By combining them, we achieve state-of-the-art results on Caltech101 and 15 Scenes datasets. As a side contribution, we also investigate how to speed up the NBNN computations.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"426 1","pages":"1824-1831"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"124","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 124
Abstract
Naive Bayes Nearest Neighbor (NBNN) has recently been proposed as a powerful, non-parametric approach for object classification, that manages to achieve remarkably good results thanks to the avoidance of a vector quantization step and the use of image-to-class comparisons, yielding good generalization. In this paper, we introduce a kernelized version of NBNN. This way, we can learn the classifier in a discriminative setting. Moreover, it then becomes straightforward to combine it with other kernels. In particular, we show that our NBNN kernel is complementary to standard bag-of-features based kernels, focussing on local generalization as opposed to global image composition. By combining them, we achieve state-of-the-art results on Caltech101 and 15 Scenes datasets. As a side contribution, we also investigate how to speed up the NBNN computations.