Two-sided estimates for the relative growth of functions and their derivatives

IF 0.5 Q3 MATHEMATICS
G. G. Braichev
{"title":"Two-sided estimates for the relative growth of functions and their derivatives","authors":"G. G. Braichev","doi":"10.13108/2017-9-3-18","DOIUrl":null,"url":null,"abstract":"We provide an extended presentation of a talk given at the International mathematical conference on theory of functions dedicated to centenary of corresponding member of AS USSR A.F. Leont’ev. We propose a new method for obtaining uniform two-sided estimates for the fraction of the derivatives of two real functions on the base of the information of two-sided estimates for the functions themselves. At that, one of the functions possesses certain properties and serves as a reference for measuring a growth and introduces some scale. The other function, whose growth is compared with that of the reference function, is convex, increases unboundedly or decays to zero on a certain interval. The method is also applicable to some class of functions concave on an interval. We consider examples of applications of the obtained results to the behavior of entire functions.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"56 1","pages":"18-25"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-3-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We provide an extended presentation of a talk given at the International mathematical conference on theory of functions dedicated to centenary of corresponding member of AS USSR A.F. Leont’ev. We propose a new method for obtaining uniform two-sided estimates for the fraction of the derivatives of two real functions on the base of the information of two-sided estimates for the functions themselves. At that, one of the functions possesses certain properties and serves as a reference for measuring a growth and introduces some scale. The other function, whose growth is compared with that of the reference function, is convex, increases unboundedly or decays to zero on a certain interval. The method is also applicable to some class of functions concave on an interval. We consider examples of applications of the obtained results to the behavior of entire functions.
函数及其导数相对增长的双边估计
我们提供了在国际数学会议上关于函数理论的演讲,以纪念苏联数学家列昂特耶夫一百周年。本文提出了一种利用函数本身的双边估计信息,求两个实函数导数的分数的一致双边估计的新方法。此时,其中一个函数具有一定的性质,并作为衡量增长的参考,并引入一定的尺度。另一个函数的增长与参考函数的增长相比较,它是凸的,无限增长或在一定间隔上衰减到零。该方法也适用于在区间上凹的某类函数。我们考虑了将所得结果应用于整个函数行为的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信