{"title":"Radon–Nikodým Theorems for Finitely Additive Multimeasures","authors":"L. Piazza, G. Porcello","doi":"10.4171/ZAA/1545","DOIUrl":null,"url":null,"abstract":". In this paper we deal with interval multimeasures. We show some Radon-Nikod´ym theorems for such multimeasures using multival- ued Henstock or Henstock-Kurzweil-Pettis derivatives. We do not use the separability assumption in the results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ZAA/1545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
. In this paper we deal with interval multimeasures. We show some Radon-Nikod´ym theorems for such multimeasures using multival- ued Henstock or Henstock-Kurzweil-Pettis derivatives. We do not use the separability assumption in the results.