{"title":"Erdősian functions and an identity of Gauss","authors":"T. Chatterjee, Suraj Singh Khurana","doi":"10.3792/PJAA.95.58","DOIUrl":null,"url":null,"abstract":"A famous identity of Gauss gives a closed form expression for the values of the digamma function $\\psi(x)$ at rational arguments $x$ in terms of elementary functions. Linear combinations of such values are intimately connected with a conjecture of Erdős which asserts non vanishing of an infinite series associated to a certain class of periodic arithmetic functions. In this note we give a different proof for the identity of Gauss using an orthogonality like relation satisfied by these functions. As a by product we are able to give a new interpretation for $n$th Catalan number in terms of these functions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/PJAA.95.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A famous identity of Gauss gives a closed form expression for the values of the digamma function $\psi(x)$ at rational arguments $x$ in terms of elementary functions. Linear combinations of such values are intimately connected with a conjecture of Erdős which asserts non vanishing of an infinite series associated to a certain class of periodic arithmetic functions. In this note we give a different proof for the identity of Gauss using an orthogonality like relation satisfied by these functions. As a by product we are able to give a new interpretation for $n$th Catalan number in terms of these functions.