{"title":"Global well-posedness of a system from quantum hydrodynamics for small data","authors":"C. Audiard","doi":"10.5802/cml.21","DOIUrl":null,"url":null,"abstract":"This article describes a joint work of the author with B.Haspot on the existence and uniqueness of global solutions for the Euler-Korteweg equations in the special case of quantum hydrodynamics. Our aim here is to sketch how one can construct global small solutions of the Gross-Pitaevskii equation and use the so-called Madelung transform to convert these into solutions without vacuum of the quantum hydrodynamics. A key point is to bound the the solution of the Gross-Pitaevskii equation away from 0, this condition is fullfilled thanks to recent scattering results.","PeriodicalId":52130,"journal":{"name":"Confluentes Mathematici","volume":"49 1","pages":"7-16"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Confluentes Mathematici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/cml.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
This article describes a joint work of the author with B.Haspot on the existence and uniqueness of global solutions for the Euler-Korteweg equations in the special case of quantum hydrodynamics. Our aim here is to sketch how one can construct global small solutions of the Gross-Pitaevskii equation and use the so-called Madelung transform to convert these into solutions without vacuum of the quantum hydrodynamics. A key point is to bound the the solution of the Gross-Pitaevskii equation away from 0, this condition is fullfilled thanks to recent scattering results.
期刊介绍:
Confluentes Mathematici is a mathematical research journal. Since its creation in 2009 by the Institut Camille Jordan UMR 5208 and the Unité de Mathématiques Pures et Appliquées UMR 5669 of the Université de Lyon, it reflects the wish of the mathematical community of Lyon—Saint-Étienne to participate in the new forms of scientific edittion. The journal is electronic only, fully open acces and without author charges. The journal aims to publish high quality mathematical research articles in English, French or German. All domains of Mathematics (pure and applied) and Mathematical Physics will be considered, as well as the History of Mathematics. Confluentes Mathematici also publishes survey articles. Authors are asked to pay particular attention to the expository style of their article, in order to be understood by all the communities concerned.