Optical soliton perturbation and polarization with quadratic--cubic nonlinearity by sine-Gordon equation approach

IF 0.7 Q3 PHYSICS, MULTIDISCIPLINARY
Y. Yıldırım, E. Topkara, A. Biswas, H. Triki, M. Ekici, P. Guggilla, S. Khan, M. Belić
{"title":"Optical soliton perturbation and polarization with quadratic--cubic nonlinearity by sine-Gordon equation approach","authors":"Y. Yıldırım, E. Topkara, A. Biswas, H. Triki, M. Ekici, P. Guggilla, S. Khan, M. Belić","doi":"10.30970/JPS.25.2001","DOIUrl":null,"url":null,"abstract":"This paper recovers a full spectrum of optical solitons that are generated by the combined e(cid:27)ects of dispersion and nonlinearity of the pulse propagation. The quadratic(cid:21)cubic form of the nonlinear refractive index is incorporated in the governing nonlinear Schr(cid:4)odinger equation, which governs the dynamics of the soliton transmission across trans-continental and transoceanic distances. The model is considered with a nonlinear chromatic dispersion that is required to sustain for smooth transmission of soliton pulses in optical (cid:28)bers, couplers, PCF, magneto-optic waveguides, crystals, metamaterials, metasurfaces, birefringent (cid:28)bers, DWDM systems and other form of waveguides. Solitons in birefringent (cid:28)bers as well as solitons in polarization preserving (cid:28)bers are considered. The governing model is treated with Hamiltonian type perturbation terms. The perturbation terms are with full intensity. The model is studied for the intensity count m = 1 . The adopted integration algorithm is the sine-Gordon equation method that reveals single form soliton solutions as well as dual-form soliton solutions. These solitons are dark soliton, singular soliton, bright soliton and combo singular soliton. Also, dark soliton represents a kink/anti-kink solitary wave or a shock wave in (cid:29)uid dynamics. The respective constraint conditions are also in place to guarantee the existence of such solitons.","PeriodicalId":43482,"journal":{"name":"Journal of Physical Studies","volume":"282 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/JPS.25.2001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

This paper recovers a full spectrum of optical solitons that are generated by the combined e(cid:27)ects of dispersion and nonlinearity of the pulse propagation. The quadratic(cid:21)cubic form of the nonlinear refractive index is incorporated in the governing nonlinear Schr(cid:4)odinger equation, which governs the dynamics of the soliton transmission across trans-continental and transoceanic distances. The model is considered with a nonlinear chromatic dispersion that is required to sustain for smooth transmission of soliton pulses in optical (cid:28)bers, couplers, PCF, magneto-optic waveguides, crystals, metamaterials, metasurfaces, birefringent (cid:28)bers, DWDM systems and other form of waveguides. Solitons in birefringent (cid:28)bers as well as solitons in polarization preserving (cid:28)bers are considered. The governing model is treated with Hamiltonian type perturbation terms. The perturbation terms are with full intensity. The model is studied for the intensity count m = 1 . The adopted integration algorithm is the sine-Gordon equation method that reveals single form soliton solutions as well as dual-form soliton solutions. These solitons are dark soliton, singular soliton, bright soliton and combo singular soliton. Also, dark soliton represents a kink/anti-kink solitary wave or a shock wave in (cid:29)uid dynamics. The respective constraint conditions are also in place to guarantee the existence of such solitons.
二次-三次非线性光孤子摄动与偏振
本文恢复了由脉冲传播的色散和非线性共同作用的e(cid:27)个分量所产生的全谱光孤子。非线性折射率的二次(cid:21)三次形式被纳入控制非线性Schr(cid:4)odinger方程,该方程控制孤子跨大陆和跨海洋传输的动力学。该模型考虑了在光学(cid:28)波导、耦合器、PCF、磁光波导、晶体、超材料、超表面、双折射(cid:28)波导、DWDM系统和其他形式的波导中维持孤子脉冲平滑传输所需的非线性色散。考虑了双折射(cid:28)光阑中的孤子和保偏振(cid:28)光阑中的孤子。用哈密顿型摄动项处理控制模型。微扰项是满强度的。对强度计数m = 1时的模型进行了研究。所采用的积分算法是正弦戈登方程法,可以显示单形式孤子解和双形式孤子解。这些孤子是暗孤子,奇异孤子,亮孤子和组合奇异孤子。暗孤子在流体动力学中代表扭结/反扭结孤子波或激波。相应的约束条件也保证了这种孤子的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physical Studies
Journal of Physical Studies PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
20.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信