Fuzzy-logic-inspired Multi-contrast-agent Strategy for Optimal Tumor Classification

Zheng Gong, Yifan Chen, Yue Sun, Yue Xiao, M. Cree
{"title":"Fuzzy-logic-inspired Multi-contrast-agent Strategy for Optimal Tumor Classification","authors":"Zheng Gong, Yifan Chen, Yue Sun, Yue Xiao, M. Cree","doi":"10.1109/NANO51122.2021.9514336","DOIUrl":null,"url":null,"abstract":"This paper proposes a new fuzzy-logic-inspired multi-contrast-agent strategy (MCAS) for optimal tumor classification. The proposed strategy accounts for the competitive and symbiotic relationships among multiple contrast agents through a sequential logic circuit analysis. Furthermore, the strategy enables an intuitive yet systematic way to analyze the tumor classification vagueness and ambiguous uncertainties and optimize the utilization of multiple agents through a fuzzy comprehensive evaluation. A numerical example is used to demonstrate how the classification performance in terms of decision-making fuzziness is significantly improved with an optimal “cocktail recipe” methodology using the proposed MCAS.","PeriodicalId":6791,"journal":{"name":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","volume":"142 1","pages":"314-317"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO51122.2021.9514336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a new fuzzy-logic-inspired multi-contrast-agent strategy (MCAS) for optimal tumor classification. The proposed strategy accounts for the competitive and symbiotic relationships among multiple contrast agents through a sequential logic circuit analysis. Furthermore, the strategy enables an intuitive yet systematic way to analyze the tumor classification vagueness and ambiguous uncertainties and optimize the utilization of multiple agents through a fuzzy comprehensive evaluation. A numerical example is used to demonstrate how the classification performance in terms of decision-making fuzziness is significantly improved with an optimal “cocktail recipe” methodology using the proposed MCAS.
基于模糊逻辑的多对比剂最优肿瘤分类策略
本文提出了一种基于模糊逻辑的多对比剂(multi-contrast-agent, MCAS)优化肿瘤分类策略。该策略通过顺序逻辑电路分析来解释多种造影剂之间的竞争和共生关系。此外,该策略能够直观而系统地分析肿瘤分类的模糊性和模糊不确定性,并通过模糊综合评价优化多agent的利用。通过一个数值例子,说明了利用所提出的MCAS,采用最优“鸡尾酒配方”方法,如何显著提高决策模糊度方面的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信