{"title":"Exploiting Domain and Program Structure to Synthesize Efficient and Precise Data Flow Analyses (T)","authors":"Elena Sherman, Matthew B. Dwyer","doi":"10.1109/ASE.2015.41","DOIUrl":null,"url":null,"abstract":"A key challenge in implementing an efficient and precise data flow analysis is determining how to abstract the domain of values that a program variable can take on and how to update abstracted values to reflect program semantics. Such updates are performed by a transfer function and recent work by Thakur, Elder and Reps defined the bilateral algorithm for computing the most precise transfer function for a given abstract domain. In this paper, we identify and exploit the special case where abstract domains are comprised of disjoint subsets. For such domains, transfer functions computed using a customized algorithm can improve performance and in combination with symbolic modeling of block-level transfer functions improve precision as well. We implemented these algorithms in Soot and used them to perform data flow analysis on more than 100 non-trivial Java methods drawn from open source projects. Our experimental data are promising as they demonstrate that a 25-fold reduction in analysis time can be achieved and precision can be increased relative to existing methods.","PeriodicalId":6586,"journal":{"name":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"3 1","pages":"608-618"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2015.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
A key challenge in implementing an efficient and precise data flow analysis is determining how to abstract the domain of values that a program variable can take on and how to update abstracted values to reflect program semantics. Such updates are performed by a transfer function and recent work by Thakur, Elder and Reps defined the bilateral algorithm for computing the most precise transfer function for a given abstract domain. In this paper, we identify and exploit the special case where abstract domains are comprised of disjoint subsets. For such domains, transfer functions computed using a customized algorithm can improve performance and in combination with symbolic modeling of block-level transfer functions improve precision as well. We implemented these algorithms in Soot and used them to perform data flow analysis on more than 100 non-trivial Java methods drawn from open source projects. Our experimental data are promising as they demonstrate that a 25-fold reduction in analysis time can be achieved and precision can be increased relative to existing methods.