A Method to Screen, Assess, and Prepare Open Data for Use

IF 1.5 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
P. Krasikov, Christine Legner
{"title":"A Method to Screen, Assess, and Prepare Open Data for Use","authors":"P. Krasikov, Christine Legner","doi":"10.1145/3603708","DOIUrl":null,"url":null,"abstract":"Open data's value-creating capabilities and innovation potential are widely recognized, resulting in a notable increase in the number of published open data sources. A crucial challenge for companies intending to leverage open data is to identify suitable open datasets that support specific business scenarios and prepare these datasets for use. Researchers have developed several open data assessment techniques, but those are restricted in scope, do not consider the use context, and are not embedded in the complete set of activities required for open data consumption in enterprises. Therefore, our research aims to develop prescriptive knowledge in the form of a meaningful method to screen, assess, and prepare open data for use in an enterprise setting. Our findings complement existing open data assessment techniques by providing methodological guidance to prepare open data of uncertain quality for use in a value-adding and demand-oriented manner, enabled by knowledge graphs and linked data concepts. From an academic perspective, our research conceptualizes open data preparation as a purposeful and value-creating process.","PeriodicalId":44355,"journal":{"name":"ACM Journal of Data and Information Quality","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal of Data and Information Quality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Open data's value-creating capabilities and innovation potential are widely recognized, resulting in a notable increase in the number of published open data sources. A crucial challenge for companies intending to leverage open data is to identify suitable open datasets that support specific business scenarios and prepare these datasets for use. Researchers have developed several open data assessment techniques, but those are restricted in scope, do not consider the use context, and are not embedded in the complete set of activities required for open data consumption in enterprises. Therefore, our research aims to develop prescriptive knowledge in the form of a meaningful method to screen, assess, and prepare open data for use in an enterprise setting. Our findings complement existing open data assessment techniques by providing methodological guidance to prepare open data of uncertain quality for use in a value-adding and demand-oriented manner, enabled by knowledge graphs and linked data concepts. From an academic perspective, our research conceptualizes open data preparation as a purposeful and value-creating process.
筛选、评估和准备开放数据的方法
开放数据的价值创造能力和创新潜力得到广泛认可,公开的开放数据源数量显著增加。对于打算利用开放数据的公司来说,一个关键的挑战是确定支持特定业务场景的合适开放数据集,并准备好这些数据集的使用。研究人员已经开发了几种开放数据评估技术,但这些技术在范围上受到限制,没有考虑使用上下文,也没有嵌入到企业开放数据消费所需的完整活动中。因此,我们的研究旨在以一种有意义的方法的形式开发规范性知识,以筛选、评估和准备在企业环境中使用的开放数据。我们的研究结果补充了现有的开放数据评估技术,为准备质量不确定的开放数据提供了方法学指导,以便通过知识图谱和关联数据概念以增值和需求导向的方式使用。从学术角度来看,我们的研究将开放数据准备概念化为一个有目的和创造价值的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Journal of Data and Information Quality
ACM Journal of Data and Information Quality COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
4.10
自引率
4.80%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信