Spectral sparsification of simplicial complexes for clustering and label propagation

Q4 Mathematics
B. Osting, Sourabh Palande, Bei Wang
{"title":"Spectral sparsification of simplicial complexes for clustering and label propagation","authors":"B. Osting, Sourabh Palande, Bei Wang","doi":"10.20382/jocg.v11i1a8","DOIUrl":null,"url":null,"abstract":"As a generalization of the use of graphs to describe pairwise interactions, simplicial complexes can be used to model higher-order interactions between three or more objects in complex systems. There has been a recent surge in activity for the development of data analysis methods applicable to simplicial complexes, including techniques based on computational topology, higher-order random processes, generalized Cheeger inequalities, isoperimetric inequalities, and spectral methods. In particular, spectral learning methods (e.g. label propagation and clustering) that directly operate on simplicial complexes represent a new direction for analyzing such complex datasets. \nTo apply spectral learning methods to massive datasets modeled as simplicial complexes, we develop a method for sparsifying simplicial complexes that preserves the spectrum of the associated Laplacian matrices. We show that the theory of Spielman and Srivastava for the sparsification of graphs extends to simplicial complexes via the up Laplacian. In particular, we introduce a generalized effective resistance for simplices, provide an algorithm for sparsifying simplicial complexes at a fixed dimension, and give a specific version of the generalized Cheeger inequality for weighted simplicial complexes. Finally, we introduce higher-order generalizations of spectral clustering and label propagation for simplicial complexes and demonstrate via experiments the utility of the proposed spectral sparsification method for these applications.","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"25 1","pages":"176-211"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v11i1a8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 11

Abstract

As a generalization of the use of graphs to describe pairwise interactions, simplicial complexes can be used to model higher-order interactions between three or more objects in complex systems. There has been a recent surge in activity for the development of data analysis methods applicable to simplicial complexes, including techniques based on computational topology, higher-order random processes, generalized Cheeger inequalities, isoperimetric inequalities, and spectral methods. In particular, spectral learning methods (e.g. label propagation and clustering) that directly operate on simplicial complexes represent a new direction for analyzing such complex datasets. To apply spectral learning methods to massive datasets modeled as simplicial complexes, we develop a method for sparsifying simplicial complexes that preserves the spectrum of the associated Laplacian matrices. We show that the theory of Spielman and Srivastava for the sparsification of graphs extends to simplicial complexes via the up Laplacian. In particular, we introduce a generalized effective resistance for simplices, provide an algorithm for sparsifying simplicial complexes at a fixed dimension, and give a specific version of the generalized Cheeger inequality for weighted simplicial complexes. Finally, we introduce higher-order generalizations of spectral clustering and label propagation for simplicial complexes and demonstrate via experiments the utility of the proposed spectral sparsification method for these applications.
用于聚类和标签传播的简单复合物的光谱稀疏化
作为使用图来描述两两相互作用的推广,简单复合体可以用来模拟复杂系统中三个或更多对象之间的高阶相互作用。最近,开发适用于简单复体的数据分析方法的活动激增,包括基于计算拓扑、高阶随机过程、广义Cheeger不等式、等周不等式和谱方法的技术。特别是,直接操作简单复合体的谱学习方法(如标签传播和聚类)代表了分析这类复杂数据集的新方向。为了将谱学习方法应用于建模为简单复合体的大规模数据集,我们开发了一种简化复合体的方法,该方法保留了相关拉普拉斯矩阵的谱。我们证明了Spielman和Srivastava关于图稀疏化的理论通过上拉普拉斯扩展到简单复形。特别地,我们引入了简单体的广义有效阻力,提供了一种在固定维数上稀疏化简单体的算法,并给出了加权简单体的广义Cheeger不等式的一个特定版本。最后,我们为简单复合体引入了光谱聚类和标签传播的高阶推广,并通过实验证明了所提出的光谱稀疏化方法在这些应用中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms. Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信