Restricted Empirical Likelihood Estimation for Time Series Autoregressive Models

IF 1 Q3 Mathematics
Mahdieh Bayati, S. K. Ghoreishi, Jingjing Wu
{"title":"Restricted Empirical Likelihood Estimation for Time Series Autoregressive Models","authors":"Mahdieh Bayati, S. K. Ghoreishi, Jingjing Wu","doi":"10.2991/JSTA.D.210121.001","DOIUrl":null,"url":null,"abstract":"In this paper, we first illustrate the restricted empirical likelihood function, as an alternative to the usual empirical likelihood. Then, we use this quasi-empirical likelihood function as a basis for Bayesian analysis of AR(r) time series models. The efficiency of both the posterior computation algorithm, when the estimating equations are linear functions of the parameters, and the EM algorithm for estimating hyper-parameters is an appealing property of our proposed approach. Moreover, the competitive finitesample performance of this proposed method is illustrated via both simulation study and analysis of a real dataset.","PeriodicalId":45080,"journal":{"name":"Journal of Statistical Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/JSTA.D.210121.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we first illustrate the restricted empirical likelihood function, as an alternative to the usual empirical likelihood. Then, we use this quasi-empirical likelihood function as a basis for Bayesian analysis of AR(r) time series models. The efficiency of both the posterior computation algorithm, when the estimating equations are linear functions of the parameters, and the EM algorithm for estimating hyper-parameters is an appealing property of our proposed approach. Moreover, the competitive finitesample performance of this proposed method is illustrated via both simulation study and analysis of a real dataset.
时间序列自回归模型的限制经验似然估计
在本文中,我们首先说明了限制经验似然函数,作为一种替代通常的经验似然。然后,我们使用这个准经验似然函数作为AR(r)时间序列模型贝叶斯分析的基础。当估计方程是参数的线性函数时,后验计算算法和用于估计超参数的EM算法的效率都是我们提出的方法的一个吸引人的特性。此外,通过仿真研究和对真实数据集的分析,说明了该方法的有限样本竞争性性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信