Universal decomposition model: An efficient technique for palaeoenvironmental reconstruction from grain‐size distribution

IF 2.6 2区 地球科学 Q1 GEOLOGY
Sedimentology Pub Date : 2023-05-13 DOI:10.1111/sed.13115
Yuming Liu, Ting Wang, Bo Liu, Yi-Jie Long, Xingxing Liu, Youbin Sun
{"title":"Universal decomposition model: An efficient technique for palaeoenvironmental reconstruction from grain‐size distribution","authors":"Yuming Liu, Ting Wang, Bo Liu, Yi-Jie Long, Xingxing Liu, Youbin Sun","doi":"10.1111/sed.13115","DOIUrl":null,"url":null,"abstract":"For many years, researchers have used the decomposition of grain‐size distributions to acquire critical information on provenances, transport dynamics and depositional environments. This study presents a novel decomposition method, termed the universal decomposition model, for analysing grain‐size data. The universal decomposition model unifies single‐sample unmixing and end‐member modelling analysis approaches and overcomes their respective limitations. To evaluate the effectiveness of the universal decomposition model, an artificial dataset and borehole data from the west Weihe Basin were analysed. Results indicate that the universal decomposition model algorithm performs proficiently on both datasets. Correlation analysis was employed to compare the abilities of universal decomposition model, single‐sample unmixing and end‐member modelling analysis to extract minor signals, with universal decomposition model and single‐sample unmixing exhibiting greater proficiency. Furthermore, the universal decomposition model provides a broader perspective for contrasting single‐sample unmixing and end‐member modelling analysis. The study highlights the inadequacy of the statistical method for determining the optimal number of components and summarizes an empirical approach. Moreover, disregarding the potential diversity in component shapes of real‐world sediments has been demonstrated to be a sub‐optimal design. Finally, this article presents results of a new investigation into the geological significance of sediment grain sizes revealed by various analytical methods that suggest that the universal decomposition model has enormous potential in reconstructing paleoenvironment.","PeriodicalId":21838,"journal":{"name":"Sedimentology","volume":"39 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sedimentology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/sed.13115","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

For many years, researchers have used the decomposition of grain‐size distributions to acquire critical information on provenances, transport dynamics and depositional environments. This study presents a novel decomposition method, termed the universal decomposition model, for analysing grain‐size data. The universal decomposition model unifies single‐sample unmixing and end‐member modelling analysis approaches and overcomes their respective limitations. To evaluate the effectiveness of the universal decomposition model, an artificial dataset and borehole data from the west Weihe Basin were analysed. Results indicate that the universal decomposition model algorithm performs proficiently on both datasets. Correlation analysis was employed to compare the abilities of universal decomposition model, single‐sample unmixing and end‐member modelling analysis to extract minor signals, with universal decomposition model and single‐sample unmixing exhibiting greater proficiency. Furthermore, the universal decomposition model provides a broader perspective for contrasting single‐sample unmixing and end‐member modelling analysis. The study highlights the inadequacy of the statistical method for determining the optimal number of components and summarizes an empirical approach. Moreover, disregarding the potential diversity in component shapes of real‐world sediments has been demonstrated to be a sub‐optimal design. Finally, this article presents results of a new investigation into the geological significance of sediment grain sizes revealed by various analytical methods that suggest that the universal decomposition model has enormous potential in reconstructing paleoenvironment.
通用分解模型:一种从粒度分布重建古环境的有效技术
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sedimentology
Sedimentology 地学-地质学
CiteScore
8.20
自引率
11.40%
发文量
94
审稿时长
6-12 weeks
期刊介绍: The international leader in its field, Sedimentology publishes ground-breaking research from across the spectrum of sedimentology, sedimentary geology and sedimentary geochemistry. Areas covered include: experimental and theoretical grain transport; sediment fluxes; modern and ancient sedimentary environments; sequence stratigraphy sediment-organism interaction; palaeosoils; diagenesis; stable isotope geochemistry; environmental sedimentology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信