Consumption Prediction and Evaluation of Harmonic Distortion in a Hospital using Neural Networks

Q4 Energy
N. Tolentino, D. Borges, M. Albertini, L. P. Pires, F. A. Moura, M.V. Rezende, G. Lima, J. O. Rezende
{"title":"Consumption Prediction and Evaluation of Harmonic Distortion in a Hospital using Neural Networks","authors":"N. Tolentino, D. Borges, M. Albertini, L. P. Pires, F. A. Moura, M.V. Rezende, G. Lima, J. O. Rezende","doi":"10.24084/repqj21.297","DOIUrl":null,"url":null,"abstract":"This article aims to present a proposal for a methodology to analyze the energy efficiency of a hospital according to the current consumption obtained through field measurements. In addition, it aims to present the prediction of the increase in consumption over the years and correlate it with the possible increase in the harmonic distortion of stress. This analysis is essential for the studies of the connection impacts, allowing the estimation and evaluation of the energy quality through the harmonic voltage distortions over the years. The study is validated by comparing the consumption prediction curve obtained by Neural Network training with the data extracted from measurements and analysis of energy bills. The results show that the model generates the best prediction performance.","PeriodicalId":21076,"journal":{"name":"Renewable Energy and Power Quality Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy and Power Quality Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24084/repqj21.297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

This article aims to present a proposal for a methodology to analyze the energy efficiency of a hospital according to the current consumption obtained through field measurements. In addition, it aims to present the prediction of the increase in consumption over the years and correlate it with the possible increase in the harmonic distortion of stress. This analysis is essential for the studies of the connection impacts, allowing the estimation and evaluation of the energy quality through the harmonic voltage distortions over the years. The study is validated by comparing the consumption prediction curve obtained by Neural Network training with the data extracted from measurements and analysis of energy bills. The results show that the model generates the best prediction performance.
基于神经网络的医院谐波失真消费预测与评价
本文旨在提出一种方法的建议,以分析医院的能源效率,根据目前的消耗通过实地测量获得。此外,它的目的是提出的预测,在过去的几年里,在消耗的增加,并将其与可能增加的应力谐波畸变相关联。这种分析对于研究连接影响至关重要,可以通过多年的谐波电压畸变来估计和评估电能质量。通过将神经网络训练得到的用电量预测曲线与能源账单测量分析数据进行对比,验证了研究的有效性。结果表明,该模型具有较好的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy and Power Quality Journal
Renewable Energy and Power Quality Journal Energy-Energy Engineering and Power Technology
CiteScore
0.70
自引率
0.00%
发文量
147
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信