Koszul-type determinantal formulas for families of mixed multilinear systems

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
M. Bender, J. Faugère, Angelos Mantzaflaris, Elias P. Tsigaridas
{"title":"Koszul-type determinantal formulas for families of mixed multilinear systems","authors":"M. Bender, J. Faugère, Angelos Mantzaflaris, Elias P. Tsigaridas","doi":"10.1137/20m1332190","DOIUrl":null,"url":null,"abstract":"Effective computation of resultants is a central problem in elimination theory and polynomial system solving. Commonly, we compute the resultant as a quotient of determinants of matrices and we say that there exists a determinantal formula when we can express it as a determinant of a matrix whose elements are the coefficients of the input polynomials. We study the resultant in the context of mixed multilinear polynomial systems, that is multilinear systems with polynomials having different supports, on which determinantal formulas were not known. We construct determinantal formulas for two kind of multilinear systems related to the Multiparameter Eigenvalue Problem (MEP): first, when the polynomials agree in all but one block of variables; second, when the polynomials are bilinear with different supports, related to a bipartite graph. We use the Weyman complex to construct Koszul-type determinantal formulas that generalize Sylvester-type formulas. We can use the matrices associated to these formulas to solve square systems without computing the resultant. The combination of the resultant matrices with the eigenvalue and eigenvector criterion for polynomial systems leads to a new approach for solving MEP.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20m1332190","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

Abstract

Effective computation of resultants is a central problem in elimination theory and polynomial system solving. Commonly, we compute the resultant as a quotient of determinants of matrices and we say that there exists a determinantal formula when we can express it as a determinant of a matrix whose elements are the coefficients of the input polynomials. We study the resultant in the context of mixed multilinear polynomial systems, that is multilinear systems with polynomials having different supports, on which determinantal formulas were not known. We construct determinantal formulas for two kind of multilinear systems related to the Multiparameter Eigenvalue Problem (MEP): first, when the polynomials agree in all but one block of variables; second, when the polynomials are bilinear with different supports, related to a bipartite graph. We use the Weyman complex to construct Koszul-type determinantal formulas that generalize Sylvester-type formulas. We can use the matrices associated to these formulas to solve square systems without computing the resultant. The combination of the resultant matrices with the eigenvalue and eigenvector criterion for polynomial systems leads to a new approach for solving MEP.
混合多线性系统族的koszul型行列式公式
结果的有效计算是消去理论和多项式系统求解中的一个核心问题。通常,我们将结果计算为矩阵行列式的商,当我们可以将其表示为矩阵的行列式时,我们说存在一个行列式公式,其元素是输入多项式的系数。我们研究了混合多元线性多项式系统的结式,即多项式具有不同支撑点的多元线性系统,其行列式是未知的。本文构造了与多参数特征值问题(MEP)相关的两类多线性系统的行列式公式:第一,多项式在除一个变量块外的所有变量块上都一致;第二,当多项式是双线性且具有不同支撑点时,涉及到一个二部图。我们使用Weyman复合体构造kozul型行列式公式,它推广了sylvester型公式。我们可以使用与这些公式相关的矩阵来解平方系统,而不计算结果。将合成矩阵与多项式系统的特征值和特征向量准则结合起来,为求解MEP提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信