Progression Free Survival Prediction for Head and Neck Cancer using Deep Learning based on Clinical and PET-CT Imaging Data

M. Naser, K. Wahid, A. Mohamed, M. A. Abdelaal, R. He, C. Dede, L. V. Dijk, C. Fuller
{"title":"Progression Free Survival Prediction for Head and Neck Cancer using Deep Learning based on Clinical and PET-CT Imaging Data","authors":"M. Naser, K. Wahid, A. Mohamed, M. A. Abdelaal, R. He, C. Dede, L. V. Dijk, C. Fuller","doi":"10.1101/2021.10.14.21264955","DOIUrl":null,"url":null,"abstract":"Determining progression-free survival (PFS) for head and neck squamous cell carcinoma (HNSCC) patients is a challenging but pertinent task that could help stratify patients for improved overall outcomes. PET/CT images provide a rich source of anatomical and metabolic data for potential clinical biomarkers that would inform treatment decisions and could help improve PFS. In this study, we participate in the 2021 HECKTOR Challenge to predict PFS in a large dataset of HNSCC PET/CT images using deep learning approaches. We develop a series of deep learning models based on the DenseNet architecture using a negative log-likelihood loss function that utilizes PET/CT images and clinical data as separate input channels to predict PFS in days. Internal model validation based on 10-fold cross-validation using the training data (N=224) yielded C-index values up to 0.622 (without) and 0.842 (with) censoring status considered in C-index computation, respectively. We then implemented model ensembling approaches based on the training data cross-validation folds to predict the PFS of the test set patients (N=101). External validation on the test set for the best ensembling method yielded a C-index value of 0.694. Our results are a promising example of how deep learning approaches can effectively utilize imaging and clinical data for medical outcome prediction in HNSCC, but further work in optimizing these processes is needed.","PeriodicalId":93561,"journal":{"name":"Head and neck tumor segmentation and outcome prediction : second challenge, HECKTOR 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings. Head and Neck Tumor Segmentation Challenge (2nd : 2021 ...","volume":"1 1","pages":"287-299"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Head and neck tumor segmentation and outcome prediction : second challenge, HECKTOR 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings. Head and Neck Tumor Segmentation Challenge (2nd : 2021 ...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.10.14.21264955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Determining progression-free survival (PFS) for head and neck squamous cell carcinoma (HNSCC) patients is a challenging but pertinent task that could help stratify patients for improved overall outcomes. PET/CT images provide a rich source of anatomical and metabolic data for potential clinical biomarkers that would inform treatment decisions and could help improve PFS. In this study, we participate in the 2021 HECKTOR Challenge to predict PFS in a large dataset of HNSCC PET/CT images using deep learning approaches. We develop a series of deep learning models based on the DenseNet architecture using a negative log-likelihood loss function that utilizes PET/CT images and clinical data as separate input channels to predict PFS in days. Internal model validation based on 10-fold cross-validation using the training data (N=224) yielded C-index values up to 0.622 (without) and 0.842 (with) censoring status considered in C-index computation, respectively. We then implemented model ensembling approaches based on the training data cross-validation folds to predict the PFS of the test set patients (N=101). External validation on the test set for the best ensembling method yielded a C-index value of 0.694. Our results are a promising example of how deep learning approaches can effectively utilize imaging and clinical data for medical outcome prediction in HNSCC, but further work in optimizing these processes is needed.
基于临床和PET-CT成像数据的深度学习头颈癌无进展生存预测
确定头颈部鳞状细胞癌(HNSCC)患者的无进展生存期(PFS)是一项具有挑战性但相关的任务,可以帮助患者分层以改善总体预后。PET/CT图像为潜在的临床生物标志物提供了丰富的解剖学和代谢数据来源,这些数据将为治疗决策提供信息,并有助于改善PFS。在这项研究中,我们参加了2021年HECKTOR挑战赛,使用深度学习方法预测HNSCC PET/CT图像的大型数据集中的PFS。我们开发了一系列基于DenseNet架构的深度学习模型,使用负对数似然损失函数,利用PET/CT图像和临床数据作为单独的输入通道来预测PFS。使用训练数据(N=224)进行10倍交叉验证的内部模型验证,C-index计算中考虑审查状态时的C-index值分别高达0.622(未考虑)和0.842(有考虑)。然后,我们实施了基于训练数据交叉验证折叠的模型集成方法来预测测试集患者的PFS (N=101)。对最佳组合方法的测试集进行外部验证,其C-index值为0.694。我们的研究结果是一个很有希望的例子,说明深度学习方法如何有效地利用成像和临床数据来预测HNSCC的医疗结果,但需要进一步优化这些过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信