Design, Analysis and Finite Element Modeling of Macro Fiber Composite Piezoelectric Materials

{"title":"Design, Analysis and Finite Element Modeling of Macro Fiber Composite Piezoelectric Materials","authors":"","doi":"10.33263/proceedings22.024024","DOIUrl":null,"url":null,"abstract":"Vibration energy harvester has been paid a lot of attention by many researchers to transforming ambient vibration into electrical energy, which is normally utilized to develop wireless electronic sectors. The paper presents a finite element model (FEM) of a vibration energy harvester consisting of a bimorph electromechanical system (MEMS) generator. The model is used to simulate, and compare, the mechanical characteristics and electrical response of piezoelectric material results between the cantilever beam structure formed by laminating two piezoelectric layers on both sides of a Carbon fiber reinforced polymer (CFRP) substrate and Ti-6Al-4V substrate using ANSYS®19 R1. A set of numerical simulations has been carried out, and the results show that the comparisons of the harmonic response analysis seen change between the different substrates based on the bimorph piezoelectric MEMS generator.","PeriodicalId":90703,"journal":{"name":"Proceedings. International Meshing Roundtable","volume":"4 Obstet Gynaecol Sect 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Meshing Roundtable","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/proceedings22.024024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vibration energy harvester has been paid a lot of attention by many researchers to transforming ambient vibration into electrical energy, which is normally utilized to develop wireless electronic sectors. The paper presents a finite element model (FEM) of a vibration energy harvester consisting of a bimorph electromechanical system (MEMS) generator. The model is used to simulate, and compare, the mechanical characteristics and electrical response of piezoelectric material results between the cantilever beam structure formed by laminating two piezoelectric layers on both sides of a Carbon fiber reinforced polymer (CFRP) substrate and Ti-6Al-4V substrate using ANSYS®19 R1. A set of numerical simulations has been carried out, and the results show that the comparisons of the harmonic response analysis seen change between the different substrates based on the bimorph piezoelectric MEMS generator.
宏观纤维复合压电材料的设计、分析与有限元建模
振动能量采集器将环境振动转化为电能,通常用于发展无线电子领域,已受到许多研究者的关注。本文建立了由双晶圆机电系统(MEMS)发电机组成的振动能量采集器的有限元模型。采用ANSYS®19 R1软件对碳纤维增强聚合物(CFRP)基材和Ti-6Al-4V基材两侧复合两层压电材料形成的悬臂梁结构的力学特性和电响应结果进行了仿真和比较。数值模拟结果表明,基于双晶片压电MEMS发生器的谐波响应分析在不同衬底之间的变化比较明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信