Multi-objective calibration of Tank model using multiple genetic algorithms and stopping criteria

Pub Date : 2022-01-01 DOI:10.1590/2318-0331.272220220046
J. C. G. Gutierrez, C. B. Caballero, Sofia Melo Vasconcellos, Franciele Maria Vanelli, J. Bravo
{"title":"Multi-objective calibration of Tank model using multiple genetic algorithms and stopping criteria","authors":"J. C. G. Gutierrez, C. B. Caballero, Sofia Melo Vasconcellos, Franciele Maria Vanelli, J. Bravo","doi":"10.1590/2318-0331.272220220046","DOIUrl":null,"url":null,"abstract":"ABSTRACT Calibration of hydrologic models estimates parameter values that cannot be measured and enable the rainfall-runoff processes simulation. Multi-objective evolutionary algorithms can make the calibration faster and more efficient through an iterative process. However, the standard stopping criterion used to stop the iterative process is to reach a pre-defined number of iterations defined by the modeller. Alternatively, the Ticona stopping criterion is based on the minimum number of iterations required to achieve a determined number of non-dominated solutions in the Pareto front, resulting in a reduction of the computational time without losing performance during the calibration processes. We evaluated the Ticona stopping criterion in the Tank Model calibration. The calibration processes were performed using data from two river basins, with three genetic algorithms and two objective functions. The Ticona stopping criterion required a computational time 27.4% to 44.1% lower than using the standard stopping criterion and were obtaining similar results in simulated streamflow time series and similar values of the best set of parameters.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2318-0331.272220220046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Calibration of hydrologic models estimates parameter values that cannot be measured and enable the rainfall-runoff processes simulation. Multi-objective evolutionary algorithms can make the calibration faster and more efficient through an iterative process. However, the standard stopping criterion used to stop the iterative process is to reach a pre-defined number of iterations defined by the modeller. Alternatively, the Ticona stopping criterion is based on the minimum number of iterations required to achieve a determined number of non-dominated solutions in the Pareto front, resulting in a reduction of the computational time without losing performance during the calibration processes. We evaluated the Ticona stopping criterion in the Tank Model calibration. The calibration processes were performed using data from two river basins, with three genetic algorithms and two objective functions. The Ticona stopping criterion required a computational time 27.4% to 44.1% lower than using the standard stopping criterion and were obtaining similar results in simulated streamflow time series and similar values of the best set of parameters.
分享
查看原文
基于多遗传算法和停止准则的坦克模型多目标标定
水文模型的校准估计了无法测量的参数值,并使降雨-径流过程模拟成为可能。多目标进化算法通过迭代过程使标定速度更快、效率更高。然而,用于停止迭代过程的标准停止准则是达到建模者定义的预先定义的迭代次数。另外,Ticona停止准则是基于在Pareto前沿实现确定数量的非主导解所需的最小迭代次数,从而减少了计算时间,而不会在校准过程中损失性能。我们在坦克模型校准中评估了Ticona停止准则。采用3种遗传算法和2个目标函数对两个流域的数据进行了标定。Ticona停止准则的计算时间比使用标准停止准则的计算时间低27.4% ~ 44.1%,并且在模拟的水流时间序列和最佳参数集的值中获得相似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信