Bias correcting climate model simulations using unpaired image-to-image translation networks

D. J. Fulton, Ben J. Clarke, G. Hegerl
{"title":"Bias correcting climate model simulations using unpaired image-to-image translation networks","authors":"D. J. Fulton, Ben J. Clarke, G. Hegerl","doi":"10.1175/aies-d-22-0031.1","DOIUrl":null,"url":null,"abstract":"\nWe assess the suitability of unpaired image-to-image translation networks for bias correcting data simulated by global atmospheric circulation models. We use the UNIT neural network architecture to map between data from the HadGEM3-A-N216 model and ERA5 reanalysis data in a geographical area centred on the South Asian monsoon, which has well-documented serious biases in this model. The UNIT network corrects cross-variable correlations and spatial structures but creates bias corrections with less extreme values than the target distribution. By combining the UNIT neural network with the classical technique of quantile mapping, we can produce bias corrections that are better than either alone. The UNIT+QM scheme is shown to correct cross-variable correlations, spatial patterns, and all marginal distributions of single variables. The careful correction of such joint distributions is of high importance for compound extremes research.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0031.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We assess the suitability of unpaired image-to-image translation networks for bias correcting data simulated by global atmospheric circulation models. We use the UNIT neural network architecture to map between data from the HadGEM3-A-N216 model and ERA5 reanalysis data in a geographical area centred on the South Asian monsoon, which has well-documented serious biases in this model. The UNIT network corrects cross-variable correlations and spatial structures but creates bias corrections with less extreme values than the target distribution. By combining the UNIT neural network with the classical technique of quantile mapping, we can produce bias corrections that are better than either alone. The UNIT+QM scheme is shown to correct cross-variable correlations, spatial patterns, and all marginal distributions of single variables. The careful correction of such joint distributions is of high importance for compound extremes research.
使用非配对图像到图像转换网络的偏差校正气候模型模拟
我们评估了非配对图像到图像转换网络对全球大气环流模式模拟的偏差校正数据的适用性。我们使用UNIT神经网络架构在HadGEM3-A-N216模式数据和ERA5再分析数据之间进行映射,这些数据以南亚季风为中心的地理区域为中心,该模式有充分的证据表明存在严重偏差。UNIT网络校正交叉变量相关性和空间结构,但产生的偏差校正值比目标分布的极值要小。通过将UNIT神经网络与经典的分位数映射技术相结合,我们可以产生比单独使用更好的偏差校正。结果表明,UNIT+QM方案可以校正跨变量相关性、空间模式和所有单变量的边际分布。这种联合分布的仔细校正对于复合极值的研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信