Smart Multimedia Information Retrieval

Stefan Wagenpfeil
{"title":"Smart Multimedia Information Retrieval","authors":"Stefan Wagenpfeil","doi":"10.3390/analytics2010011","DOIUrl":null,"url":null,"abstract":"The area of multimedia information retrieval (MMIR) faces two major challenges: the enormously growing number of multimedia objects (i.e., images, videos, audio, and text files), and the fast increasing level of detail of these objects (e.g., the number of pixels in images). Both challenges lead to a high demand of scalability, semantic representations, and explainability of MMIR processes. Smart MMIR solves these challenges by employing graph codes as an indexing structure, attaching semantic annotations for explainability, and employing application profiling for scaling, which results in human-understandable, expressive, and interoperable MMIR. The mathematical foundation, the modeling, implementation detail, and experimental results are shown in this paper, which confirm that Smart MMIR improves MMIR in the area of efficiency, effectiveness, and human understandability.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"154 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big data analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytics2010011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The area of multimedia information retrieval (MMIR) faces two major challenges: the enormously growing number of multimedia objects (i.e., images, videos, audio, and text files), and the fast increasing level of detail of these objects (e.g., the number of pixels in images). Both challenges lead to a high demand of scalability, semantic representations, and explainability of MMIR processes. Smart MMIR solves these challenges by employing graph codes as an indexing structure, attaching semantic annotations for explainability, and employing application profiling for scaling, which results in human-understandable, expressive, and interoperable MMIR. The mathematical foundation, the modeling, implementation detail, and experimental results are shown in this paper, which confirm that Smart MMIR improves MMIR in the area of efficiency, effectiveness, and human understandability.
智能多媒体信息检索
多媒体信息检索(MMIR)领域面临着两大挑战:多媒体对象(即图像、视频、音频和文本文件)数量的巨大增长,以及这些对象的细节水平的快速提高(例如,图像中的像素数量)。这两个挑战都导致了对mir过程的可伸缩性、语义表示和可解释性的高要求。智能mir通过使用图代码作为索引结构,附加语义注释以实现可解释性,并使用应用程序分析进行扩展来解决这些挑战,从而产生人类可理解、富有表现力和可互操作的mir。本文给出了数学基础、建模、实现细节和实验结果,证实了智能MMIR在效率、有效性和人类可理解性方面提高了MMIR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信