Multiplicative de Rham Theorems for Relative and Intersection Space Cohomology

IF 0.4 Q4 MATHEMATICS
F. Schloder, J. Essig
{"title":"Multiplicative de Rham Theorems for Relative and Intersection Space Cohomology","authors":"F. Schloder, J. Essig","doi":"10.5427/jsing.2019.19g","DOIUrl":null,"url":null,"abstract":"We construct an explicit de Rham isomorphism relating the cohomology rings of Banagl's de Rham and spatial approach to intersection space cohomology for stratified pseudomanifolds with isolated singularities. Intersection space (co-)homology is a modified (co-)homology theory extending Poincare Duality to stratified pseudomanifolds. The novelty of our result compared to the de Rham isomorphism given previously by Banagl is, that we indeed have an isomorphism of rings and not just of graded vector spaces. We also provide a proof of the de Rham Theorem for cohomology rings of pairs of smooth manifolds which we use in the proof of our main result.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2019.19g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We construct an explicit de Rham isomorphism relating the cohomology rings of Banagl's de Rham and spatial approach to intersection space cohomology for stratified pseudomanifolds with isolated singularities. Intersection space (co-)homology is a modified (co-)homology theory extending Poincare Duality to stratified pseudomanifolds. The novelty of our result compared to the de Rham isomorphism given previously by Banagl is, that we indeed have an isomorphism of rings and not just of graded vector spaces. We also provide a proof of the de Rham Theorem for cohomology rings of pairs of smooth manifolds which we use in the proof of our main result.
相对和相交空间上同调的乘法de Rham定理
构造了关于Banagl的de Rham上同构环的显式de Rham同构,并给出了具有孤立奇异点的层状伪流形相交空间上同构的空间方法。交空间(共)同调是将庞加莱对偶扩展到分层伪流形的一个改进的(共)同调理论。与之前Banagl给出的de Rham同构相比,我们的结果的新颖之处在于,我们确实有环的同构,而不仅仅是梯度向量空间的同构。我们也给出了光滑流形对的上同环的de Rham定理的一个证明,我们用它来证明我们的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信