Influence of weak disorder on the dynamical quantum phase transitions in the anisotropic XY chain

Kaiyuan Cao, Wenwen Li, Ming Zhong, P. Tong
{"title":"Influence of weak disorder on the dynamical quantum phase transitions in the anisotropic XY chain","authors":"Kaiyuan Cao, Wenwen Li, Ming Zhong, P. Tong","doi":"10.1103/physrevb.102.014207","DOIUrl":null,"url":null,"abstract":"We study the effects of disorder on the dynamical quantum phase transitions (DQPTs) in the transverse-field anisotropic XY chain by numerically calculating the Loschmidt echo after quench. By comparing the results with that of the homogeneous chain, we find that when the quench crosses the Ising transition, the small disorder will cause a new critical point. As the disorder increases, more critical points of the DQPTs will occur, constituting a critical region. In the quench across the anisotropic transition, since there are already two dynamical phase transitions in the homogeneous chain, the disorder will cause a critical region near the critical point, and the width of the critical region increases by the disordered strength. In the case of quench passing through two critical lines, the small disorder leads to the system to have three additional critical points. When the quench is in the ferromagnetic phase, the large disorder causes the two critical points of the homogeneous case to become a critical region. And for the quench in the paramagnetic phase, the larger disorder will cause the DQPTs to disappear.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.014207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We study the effects of disorder on the dynamical quantum phase transitions (DQPTs) in the transverse-field anisotropic XY chain by numerically calculating the Loschmidt echo after quench. By comparing the results with that of the homogeneous chain, we find that when the quench crosses the Ising transition, the small disorder will cause a new critical point. As the disorder increases, more critical points of the DQPTs will occur, constituting a critical region. In the quench across the anisotropic transition, since there are already two dynamical phase transitions in the homogeneous chain, the disorder will cause a critical region near the critical point, and the width of the critical region increases by the disordered strength. In the case of quench passing through two critical lines, the small disorder leads to the system to have three additional critical points. When the quench is in the ferromagnetic phase, the large disorder causes the two critical points of the homogeneous case to become a critical region. And for the quench in the paramagnetic phase, the larger disorder will cause the DQPTs to disappear.
弱无序对各向异性XY链中动态量子相变的影响
通过数值计算猝灭后的洛施密特回波,研究了无序对横向场各向异性XY链中动态量子相变的影响。通过与均匀链的结果比较,我们发现当淬火越过伊辛转变时,小的失序会引起一个新的临界点。随着紊乱程度的增加,dqpt会出现更多的临界点,构成一个临界区域。在跨各向异性转变的淬火过程中,由于均质链中已经存在两个动态相变,无序性会在临界点附近形成一个临界区域,而临界区域的宽度随着无序强度的增大而增大。在淬火通过两条临界线的情况下,小的失序导致系统有三个额外的临界点。当淬火处于铁磁相时,较大的失序使均匀情况下的两个临界点成为一个临界区域。而在顺磁相位淬火时,较大的失序会导致dqpt消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信