Gulf of Mexico Gas Export Modification Pipeline Installation – A Two Vessel Solution for PLEM Initiation Without a Pile

M. Samimi, G. Aden, Richard Carl Guynn, R. Duffy
{"title":"Gulf of Mexico Gas Export Modification Pipeline Installation – A Two Vessel Solution for PLEM Initiation Without a Pile","authors":"M. Samimi, G. Aden, Richard Carl Guynn, R. Duffy","doi":"10.2118/192917-MS","DOIUrl":null,"url":null,"abstract":"\n The ∼18 km long 10\" pipeline was installed by MCDERMOTT as part of a gas export modification development in the Gulf of Mexico. The pipeline was initiated with a 97 Te dual-hub PLEM at a water depth of 1535 m. The fast track nature of the project required the PLEM design and fabrication to be carried out in a short time in collaboration with the installation analysts to ensure installability. Initiation of the heavy PLEM at the end of a thin wall pipe in deep water posed considerable challenges in developing an installation methodology. After evaluation of all alternatives, employing an LCV to help with PLEM initiation in a flooded condition was deemed necessary. The LCV crane was deployed after PLEM reached a certain height over the seabed. A sequence of LCV and LV-NO105 movements, pipelay tower angle alteration, and pipe and LCV crane wire payout was followed to transfer the PLEM weight to the LCV crane and rotate it to horizontal. The rigging from a clump weight, which had been installed earlier as merely a contingency hold-back device, was then connected to the PLEM. A sequence of LCV movements, LV-NO105 movements, pipe and crane wire payout was followed to land the PLEM safely on the seabed. The crane wire was disconnected after laying a short length of pipeline on the seabed. The installation procedure was developed such that the sling between the contingency clump weight and PLEM remained slack. The PLEM weight was sufficient to provide the necessary horizontal holdback, after landing in the target box, for normal pipelay. The LCV crane operated in various modes (constant tension and active heave compensation) to ensure a smooth initiation process. Maintaining a smooth synchronization of activities shared between LCV and LV-NO105 was crucial to success of the project.","PeriodicalId":11079,"journal":{"name":"Day 4 Thu, November 15, 2018","volume":"484 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 15, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/192917-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ∼18 km long 10" pipeline was installed by MCDERMOTT as part of a gas export modification development in the Gulf of Mexico. The pipeline was initiated with a 97 Te dual-hub PLEM at a water depth of 1535 m. The fast track nature of the project required the PLEM design and fabrication to be carried out in a short time in collaboration with the installation analysts to ensure installability. Initiation of the heavy PLEM at the end of a thin wall pipe in deep water posed considerable challenges in developing an installation methodology. After evaluation of all alternatives, employing an LCV to help with PLEM initiation in a flooded condition was deemed necessary. The LCV crane was deployed after PLEM reached a certain height over the seabed. A sequence of LCV and LV-NO105 movements, pipelay tower angle alteration, and pipe and LCV crane wire payout was followed to transfer the PLEM weight to the LCV crane and rotate it to horizontal. The rigging from a clump weight, which had been installed earlier as merely a contingency hold-back device, was then connected to the PLEM. A sequence of LCV movements, LV-NO105 movements, pipe and crane wire payout was followed to land the PLEM safely on the seabed. The crane wire was disconnected after laying a short length of pipeline on the seabed. The installation procedure was developed such that the sling between the contingency clump weight and PLEM remained slack. The PLEM weight was sufficient to provide the necessary horizontal holdback, after landing in the target box, for normal pipelay. The LCV crane operated in various modes (constant tension and active heave compensation) to ensure a smooth initiation process. Maintaining a smooth synchronization of activities shared between LCV and LV-NO105 was crucial to success of the project.
墨西哥湾天然气出口改造管道安装-无桩启动PLEM的双船解决方案
这条长约18公里的10英寸管道由MCDERMOTT公司安装,作为墨西哥湾天然气出口改造开发的一部分。该管道在水深1535米处安装了一个97 Te双轮毂PLEM。该项目的快速跟踪性质要求在与安装分析人员合作的情况下,在短时间内完成PLEM的设计和制造,以确保可安装性。在深水中,在薄壁管道末端启动重型PLEM对开发安装方法提出了相当大的挑战。在对所有备选方案进行评估后,我们认为有必要使用LCV来帮助在淹水条件下启动PLEM。在PLEM到达海底一定高度后,LCV起重机被部署。随后进行LCV和LV-NO105移动、管道塔角度改变、管道和LCV起重机钢丝绳释放等一系列操作,将PLEM重量传递给LCV起重机并将其旋转到水平位置。之前安装的块重索具只是作为应急控制装置,然后连接到PLEM上。随后进行了一系列LCV移动、LV-NO105移动、管道和起重机钢丝的下放,使PLEM安全降落在海床上。在海底铺设了一段很短的管道后,吊车线被断开。设计了安装程序,使应急堆重和PLEM之间的吊带保持松弛。PLEM重量足以在落在目标箱后为正常管道提供必要的水平阻力。LCV起重机在各种模式下运行(恒张力和主动升沉补偿),以确保顺利启动过程。保持LCV和LV-NO105之间共享活动的顺利同步是项目成功的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信