Multi-objective Integer Programming Approaches for Solving Optimal Feature Selection Problem: A New Perspective on Multi-objective Optimization Problems in SBSE
{"title":"Multi-objective Integer Programming Approaches for Solving Optimal Feature Selection Problem: A New Perspective on Multi-objective Optimization Problems in SBSE","authors":"Yinxing Xue, Yanfu Li","doi":"10.1145/3180155.3180257","DOIUrl":null,"url":null,"abstract":"The optimal feature selection problem in software product line is typically addressed by the approaches based on Indicator-based Evolutionary Algorithm (IBEA). In this study, we frst expose the mathematical nature of this problem — multi-objective binary integer linear programming. Then, we implement/propose three mathematical programming approaches to solve this problem at di?erent scales. For small-scale problems (roughly, less than 100 features), we implement two established approaches to fnd all exact solutions. For medium-to-large problems (roughly, more than 100 features), we propose one efcient approach that can generate a representation of the entire Pareto front in linear time complexity. The empirical results show that our proposed method can fnd signifcantly more non-dominated solutions in similar or less execution time, in comparison with IBEA and its recent enhancement (i.e., IBED that combines IBEA and Di?erential Evolution).","PeriodicalId":6560,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","volume":"315 1","pages":"1231-1242"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180155.3180257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
The optimal feature selection problem in software product line is typically addressed by the approaches based on Indicator-based Evolutionary Algorithm (IBEA). In this study, we frst expose the mathematical nature of this problem — multi-objective binary integer linear programming. Then, we implement/propose three mathematical programming approaches to solve this problem at di?erent scales. For small-scale problems (roughly, less than 100 features), we implement two established approaches to fnd all exact solutions. For medium-to-large problems (roughly, more than 100 features), we propose one efcient approach that can generate a representation of the entire Pareto front in linear time complexity. The empirical results show that our proposed method can fnd signifcantly more non-dominated solutions in similar or less execution time, in comparison with IBEA and its recent enhancement (i.e., IBED that combines IBEA and Di?erential Evolution).