Cohomologies of complex manifolds with symplectic $(1,1)$-forms

Pub Date : 2020-04-19 DOI:10.4310/jsg.2023.v21.n1.a2
A. Tomassini, Xu Wang
{"title":"Cohomologies of complex manifolds with symplectic $(1,1)$-forms","authors":"A. Tomassini, Xu Wang","doi":"10.4310/jsg.2023.v21.n1.a2","DOIUrl":null,"url":null,"abstract":"Let $(X, J)$ be a complex manifold with a non-degenerated smooth $d$-closed $(1,1)$-form $\\omega$. Then we have a natural double complex $\\overline{\\partial}+\\overline{\\partial}^\\Lambda$, where $\\overline{\\partial}^\\Lambda$ denotes the symplectic adjoint of the $\\overline{\\partial}$-operator. We study the Hard Lefschetz Condition on the Dolbeault cohomology groups of $X$ with respect to the symplectic form $\\omega$. In \\cite{TW}, we proved that such a condition is equivalent to a certain symplectic analogous of the $\\partial\\overline{\\partial}$-Lemma, namely the $\\overline{\\partial}\\, \\overline{\\partial}^\\Lambda$-Lemma, which can be characterized in terms of Bott--Chern and Aeppli cohomologies associated to the above double complex. We obtain Nomizu type theorems for the Bott--Chern and Aeppli cohomologies and we show that the $\\overline{\\partial}\\, \\overline{\\partial}^\\Lambda$-Lemma is stable under small deformations of $\\omega$, but not stable under small deformations of the complex structure. However, if we further assume that $X$ satisfies the $\\partial\\overline{\\partial}$-Lemma then the $\\overline{\\partial}\\, \\overline{\\partial}^\\Lambda$-Lemma is stable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2023.v21.n1.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $(X, J)$ be a complex manifold with a non-degenerated smooth $d$-closed $(1,1)$-form $\omega$. Then we have a natural double complex $\overline{\partial}+\overline{\partial}^\Lambda$, where $\overline{\partial}^\Lambda$ denotes the symplectic adjoint of the $\overline{\partial}$-operator. We study the Hard Lefschetz Condition on the Dolbeault cohomology groups of $X$ with respect to the symplectic form $\omega$. In \cite{TW}, we proved that such a condition is equivalent to a certain symplectic analogous of the $\partial\overline{\partial}$-Lemma, namely the $\overline{\partial}\, \overline{\partial}^\Lambda$-Lemma, which can be characterized in terms of Bott--Chern and Aeppli cohomologies associated to the above double complex. We obtain Nomizu type theorems for the Bott--Chern and Aeppli cohomologies and we show that the $\overline{\partial}\, \overline{\partial}^\Lambda$-Lemma is stable under small deformations of $\omega$, but not stable under small deformations of the complex structure. However, if we further assume that $X$ satisfies the $\partial\overline{\partial}$-Lemma then the $\overline{\partial}\, \overline{\partial}^\Lambda$-Lemma is stable.
分享
查看原文
具有辛$(1,1)$-形式的复流形的上同调
设$(X, J)$为具有非退化光滑$d$ -封闭$(1,1)$ -形式$\omega$的复流形。然后我们有一个自然的双复形$\overline{\partial}+\overline{\partial}^\Lambda$,其中$\overline{\partial}^\Lambda$表示$\overline{\partial}$ -算子的辛伴随。研究了关于辛形式$\omega$的$X$的Dolbeault上同群的Hard Lefschetz条件。在\cite{TW}中,我们证明了这样的条件等价于$\partial\overline{\partial}$ -引理的某种辛类似,即$\overline{\partial}\, \overline{\partial}^\Lambda$ -引理,它可以用与上述双复形相关的Bott- Chern和Aeppli上同调来表征。我们得到了Bott- Chern和Aeppli上同调的Nomizu型定理,并证明了$\overline{\partial}\, \overline{\partial}^\Lambda$ -引理在$\omega$的小变形下是稳定的,但在复杂结构的小变形下不稳定。然而,如果我们进一步假设$X$满足$\partial\overline{\partial}$ -引理,那么$\overline{\partial}\, \overline{\partial}^\Lambda$ -引理是稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信