Influence of State of Charge on Deformation Induced Mechanical Failure in Li-Ion Cells

S. Aphale, Soham Lulla, Siddhi Marathe
{"title":"Influence of State of Charge on Deformation Induced Mechanical Failure in Li-Ion Cells","authors":"S. Aphale, Soham Lulla, Siddhi Marathe","doi":"10.1109/PECon48942.2020.9314514","DOIUrl":null,"url":null,"abstract":"Evaluation of crashworthiness safety of lithium ion batteries is of growing importance due to their usage in battery packs for EV applications. Crash event may lead to deformation of cells in the battery pack causing short circuits or contact of cathode and anode due to separator damage. This leads to hot spots and subsequent electrolyte decomposition, heat and vent gas generation and hazardous thermal runaway events. Battery state of charge (SoC) is an important factor while evaluating the mechanical response of cell to deformation and the short circuit and thermal runaway behavior. In this research, quasi static deformation tests are performed on 18650 battery cells with different SoC values to understand the SoC dependent mechanical behavior and short circuit of Lithium ion Batteries. The structural and electrical response of the Lithium Ion battery (LiB) under loading is assessed. The failure stresses and buckling loads are computed for compression and bending tests respectively. Results show that mechanical and electrical behavior of LiB is highly dependent on SoC. The results shed light on the failure behavior of the Lithium Ion batteries and aid in enhancing crash safety of LiBs and design of related systems.","PeriodicalId":6768,"journal":{"name":"2020 IEEE International Conference on Power and Energy (PECon)","volume":"306 1","pages":"282-287"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Power and Energy (PECon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECon48942.2020.9314514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluation of crashworthiness safety of lithium ion batteries is of growing importance due to their usage in battery packs for EV applications. Crash event may lead to deformation of cells in the battery pack causing short circuits or contact of cathode and anode due to separator damage. This leads to hot spots and subsequent electrolyte decomposition, heat and vent gas generation and hazardous thermal runaway events. Battery state of charge (SoC) is an important factor while evaluating the mechanical response of cell to deformation and the short circuit and thermal runaway behavior. In this research, quasi static deformation tests are performed on 18650 battery cells with different SoC values to understand the SoC dependent mechanical behavior and short circuit of Lithium ion Batteries. The structural and electrical response of the Lithium Ion battery (LiB) under loading is assessed. The failure stresses and buckling loads are computed for compression and bending tests respectively. Results show that mechanical and electrical behavior of LiB is highly dependent on SoC. The results shed light on the failure behavior of the Lithium Ion batteries and aid in enhancing crash safety of LiBs and design of related systems.
电荷状态对锂离子电池变形机械失效的影响
由于锂离子电池在电动汽车电池组中的应用,其耐碰撞安全性评估变得越来越重要。碰撞事件可能导致电池组中的电池变形,造成短路或由于隔板损坏而导致阴极和阳极接触。这会导致热点和随后的电解质分解,热量和排气产生以及危险的热失控事件。电池荷电状态(SoC)是评价电池变形力学响应和短路热失控行为的重要因素。本研究通过对不同荷电状态下的18650电池单体进行准静态变形试验,了解锂离子电池荷电状态下的力学行为和短路特性。研究了锂离子电池在载荷作用下的结构响应和电响应。分别计算了压缩和弯曲试验的破坏应力和屈曲载荷。结果表明,锂离子电池的力学和电学行为高度依赖于SoC。研究结果揭示了锂离子电池的失效行为,有助于提高锂离子电池的碰撞安全性和相关系统的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信