Change detection in parametric multivariate dynamic data streams using the ARMAX-GARCH model

IF 2.6 2区 工程技术 Q2 ENGINEERING, INDUSTRIAL
Miaomiao Yu, Chunjie Wu, F. Tsung
{"title":"Change detection in parametric multivariate dynamic data streams using the ARMAX-GARCH model","authors":"Miaomiao Yu, Chunjie Wu, F. Tsung","doi":"10.1080/00224065.2021.1903820","DOIUrl":null,"url":null,"abstract":"Abstract Dynamic data detection is one of the main concerns in the statistical process control (SPC) field. Here we focus on monitoring parametric multivariate dynamic data streams using the ARMAX-GARCH model, which reflects both the influence of exogenous variables on the mean vector and the heterogeneity of the covariance matrix. A quasi maximum likelihood estimator is used to estimate the parameter vector of a dynamic process, and a top-r control scheme is proposed to monitor the parameters of multi-dimensional data streams. Finally, a real-data example of monitoring landslide illustrates the superiorities of the proposed scheme.","PeriodicalId":54769,"journal":{"name":"Journal of Quality Technology","volume":"148 1","pages":"303 - 323"},"PeriodicalIF":2.6000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00224065.2021.1903820","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract Dynamic data detection is one of the main concerns in the statistical process control (SPC) field. Here we focus on monitoring parametric multivariate dynamic data streams using the ARMAX-GARCH model, which reflects both the influence of exogenous variables on the mean vector and the heterogeneity of the covariance matrix. A quasi maximum likelihood estimator is used to estimate the parameter vector of a dynamic process, and a top-r control scheme is proposed to monitor the parameters of multi-dimensional data streams. Finally, a real-data example of monitoring landslide illustrates the superiorities of the proposed scheme.
使用ARMAX-GARCH模型的参数化多元动态数据流的变化检测
动态数据检测是统计过程控制(SPC)领域的主要问题之一。本文重点研究了使用ARMAX-GARCH模型监测参数化多元动态数据流,该模型既反映了外生变量对均值向量的影响,也反映了协方差矩阵的异质性。利用拟极大似然估计估计动态过程的参数向量,提出了一种top-r控制方案来监测多维数据流的参数。最后,以滑坡监测的实际数据为例,说明了该方案的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Quality Technology
Journal of Quality Technology 管理科学-工程:工业
CiteScore
5.20
自引率
4.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: The objective of Journal of Quality Technology is to contribute to the technical advancement of the field of quality technology by publishing papers that emphasize the practical applicability of new techniques, instructive examples of the operation of existing techniques and results of historical researches. Expository, review, and tutorial papers are also acceptable if they are written in a style suitable for practicing engineers. Sample our Mathematics & Statistics journals, sign in here to start your FREE access for 14 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信