Bifurcation analysis and chaos control of discrete prey–predator model incorporating novel prey–refuge concept

IF 0.9 Q3 MATHEMATICS, APPLIED
Prasun K. Santra, Ghanshaym S. Mahapatra, Ganga R. Phaijoo
{"title":"Bifurcation analysis and chaos control of discrete prey–predator model incorporating novel prey–refuge concept","authors":"Prasun K. Santra,&nbsp;Ghanshaym S. Mahapatra,&nbsp;Ganga R. Phaijoo","doi":"10.1002/cmm4.1185","DOIUrl":null,"url":null,"abstract":"<p>This article investigates a prey–predator model incorporating a novel refuge proportional to prey and inverse proportion to the predator. We find conditions for the local asymptotic stability of fixed points of the proposed prey–predator model. This article presents Neimark–Sacker bifurcation (NSB) and period-doubling bifurcation (PDB) at particular parameter values for positive equilibrium points of the proposed refuge-based prey–predator system. The system exhibits the chaotic dynamics at increasing values of the bifurcation parameter. The hybrid control methodology will control the chaos of the proposed prey–predator dynamical system and discuss the chaotic situation for different biological parameters through graphical analysis. Numerical simulations support the theoretical outcome and long-term chaotic behavior over a broad range of parameters.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1185","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

Abstract

This article investigates a prey–predator model incorporating a novel refuge proportional to prey and inverse proportion to the predator. We find conditions for the local asymptotic stability of fixed points of the proposed prey–predator model. This article presents Neimark–Sacker bifurcation (NSB) and period-doubling bifurcation (PDB) at particular parameter values for positive equilibrium points of the proposed refuge-based prey–predator system. The system exhibits the chaotic dynamics at increasing values of the bifurcation parameter. The hybrid control methodology will control the chaos of the proposed prey–predator dynamical system and discuss the chaotic situation for different biological parameters through graphical analysis. Numerical simulations support the theoretical outcome and long-term chaotic behavior over a broad range of parameters.

包含新猎物-避难所概念的离散猎物-捕食者模型的分岔分析与混沌控制
本文研究了一个包含与猎物成正比和与捕食者成反比的新型避难所的捕食者-捕食者模型。我们找到了该模型不动点局部渐近稳定的条件。本文给出了特定参数值下的neimmark - sacker分岔(NSB)和倍周期分岔(PDB)。当分岔参数增大时,系统表现出混沌动力学特性。混合控制方法将控制所提出的食饵-捕食者动力系统的混沌性,并通过图形分析讨论不同生物参数下的混沌情况。数值模拟支持理论结果和在广泛参数范围内的长期混沌行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信