Phase-structural heterogeneity and activity of the surface of polymineral sand powders

IF 1 Q4 NANOSCIENCE & NANOTECHNOLOGY
M. Morozova, A. Ayzenshtadt, M. Akulova, M. Frolova
{"title":"Phase-structural heterogeneity and activity of the surface of polymineral sand powders","authors":"M. Morozova, A. Ayzenshtadt, M. Akulova, M. Frolova","doi":"10.15828/2075-8545-2022-14-2-89-95","DOIUrl":null,"url":null,"abstract":": Introduction. The value of the specific surface ( S sp ), the degree of crystallinity (С, %) and surface activity ( k s ) plays an important role in creating various compositions. The increase in the size of S sp is associated with a change in the “С” of rock powders, the value of which characterizes the properties of fillers. The reactivity of the finely dispersed material can be determined by the value of k s , which allows quantifying transition of the potential energy into free surface energy by activating the surface of the raw material. Therefore, determining the functional relationship between the parameters characterizing the reactivity of rock powders is an urgent task. Methods and Materials. Four deposits of polymineral construction sands are selected as raw materials. To obtain fine powders, the samples were ground by dry dispersion. The specific surface area of rock systems was determined by gas sorption. Crystallinity was calculated from the X-ray diffractogram of the samples. Results and Discussion. The certain sizes of specific surfaces for highly dispersed rocks have shown, that deposits “Kenica” and “Nekhtskoye” possess the greatest values S sp . The study of the phase-structural heterogeneity of the samples, showed a significant increase of the content of the amorphous phase. At the same time, the degree of crystallinity for the sands “Kenica” and “Nekhtskoye” deposits decreases 25%. The functional relationship between the surface activity and the shares of the amorphous component ( c ) for highly dispersed sands was characterized by mathematical expression k s = 21 • 10 –6 • c +0,58 • 10 –6 . The identified dependence demonstrates the relationship between the parameters of the phase-structural heterogeneity and k s of fine-dispersed samples. Conclusion. The results obtained showed that mechanical dispersion contributes to the activation of raw materials. This is due to the breakability of the crystal structure of minerals and the texture of the raw materials. These characteristics are reflected in the value of the activity of the surface of fine-dispersed systems of the rocky rocks.","PeriodicalId":43938,"journal":{"name":"Nanotechnologies in Construction-A Scientific Internet-Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Construction-A Scientific Internet-Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15828/2075-8545-2022-14-2-89-95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

: Introduction. The value of the specific surface ( S sp ), the degree of crystallinity (С, %) and surface activity ( k s ) plays an important role in creating various compositions. The increase in the size of S sp is associated with a change in the “С” of rock powders, the value of which characterizes the properties of fillers. The reactivity of the finely dispersed material can be determined by the value of k s , which allows quantifying transition of the potential energy into free surface energy by activating the surface of the raw material. Therefore, determining the functional relationship between the parameters characterizing the reactivity of rock powders is an urgent task. Methods and Materials. Four deposits of polymineral construction sands are selected as raw materials. To obtain fine powders, the samples were ground by dry dispersion. The specific surface area of rock systems was determined by gas sorption. Crystallinity was calculated from the X-ray diffractogram of the samples. Results and Discussion. The certain sizes of specific surfaces for highly dispersed rocks have shown, that deposits “Kenica” and “Nekhtskoye” possess the greatest values S sp . The study of the phase-structural heterogeneity of the samples, showed a significant increase of the content of the amorphous phase. At the same time, the degree of crystallinity for the sands “Kenica” and “Nekhtskoye” deposits decreases 25%. The functional relationship between the surface activity and the shares of the amorphous component ( c ) for highly dispersed sands was characterized by mathematical expression k s = 21 • 10 –6 • c +0,58 • 10 –6 . The identified dependence demonstrates the relationship between the parameters of the phase-structural heterogeneity and k s of fine-dispersed samples. Conclusion. The results obtained showed that mechanical dispersion contributes to the activation of raw materials. This is due to the breakability of the crystal structure of minerals and the texture of the raw materials. These characteristics are reflected in the value of the activity of the surface of fine-dispersed systems of the rocky rocks.
多矿物砂粉表面相结构非均质性及活性
:介绍。比表面(S sp)的值、结晶度(С, %)和表面活性(k S)在创造各种组合物中起着重要作用。粒径的增加与岩石粉末“С”的变化有关,其值表征填料的性质。精细分散的材料的反应性可以通过k s的值来确定,k s可以通过激活原料的表面来量化势能向自由表面能的转变。因此,确定表征岩石粉末反应性的参数之间的函数关系是一项紧迫的任务。方法与材料。选取了四种多矿物建筑砂矿床作为原料。为获得细粉,样品采用干分散法研磨。岩石体系的比表面积由气体吸附量决定。根据样品的x射线衍射图计算结晶度。结果和讨论。高度分散岩石的特定表面尺寸表明,“Kenica”和“Nekhtskoye”矿床具有最大的S sp值。对样品相结构非均质性的研究表明,非晶相的含量显著增加。同时,“Kenica”和“Nekhtskoye”砂的结晶度降低了25%。用数学表达式k s = 21•10 -6•c +0,58•10 -6表征了高分散砂的表面活性与非晶态组分(c)份额之间的函数关系。确定的依赖关系说明了细分散样品的相结构非均质性参数与k s之间的关系。结论。结果表明,机械分散有助于原料的活化。这是由于矿物晶体结构的易碎性和原料的质地。这些特征反映在岩石细分散体系表面活动性的数值上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
58.30%
发文量
37
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信